Spinal cord epidural stimulation (SCES) exhibits a rehabilitation potential of restoring locomotion in individuals with spinal cord injury (SCI). However, this is linked to an intensive rehabilitation locomotion approach, which is impractical to apply among a large clinical SCI population. We, hereby, propose a rehabilitation approach of using SCES to enhance motor control during exoskeletal‐assisted walking (EAW). After 24 sessions (12 weeks) of EAW swing assistance decreased from 100% to 35% in a person with C7 complete SCI. This was accompanied by 573 unassisted steps (50% of the total number of steps). Electromyographic pattern improved during EAW, reflecting the subject’s ability to rhythmically activate paralyzed muscles. Rate perceived exertion increased during EAW with SCES compared to stepping without SCES. These preliminary findings suggest that using SCES with EAW may be a feasible rehabilitation approach for persons with SCI.
Purpose
Spinal cord injury (SCI) negatively impacts muscle quality and testosterone levels. Resistance training (RT) has been shown to increase muscle cross-sectional area (CSA) after SCI, whereas testosterone replacement therapy (TRT) has been shown to improve muscle quality in other populations. The purpose of this pilot study was to examine if the combined effects of these interventions, TRT + RT, may maximize the beneficial effects on muscle quality after SCI.
Methods
Twenty-two SCI subjects randomized into either a TRT + RT (n = 11) or TRT (n = 11) intervention for 16 wk. Muscle quality measured by peak torque (PT) at speeds of 0°·s−1 (PT-0°), 60°·s−1 (PT-60°), 90°·s−1 (PT-90°), and 180°·s−1 (PT-180°), knee extensor CSA, specific tension, and contractile speed (rise time [RTi], and half-time to relaxation [½TiR]) was assessed for each limb at baseline and postintervention using 2 × 2 mixed models.
Results
After 16 wk, subjects in the TRT + RT group increased PT-0° (48.4%, P = 0.017), knee extensor CSA (30.8%, P < 0.0001), and RTi (17.7%, P = 0.012); with no significant changes observed in the TRT group. Regardless of the intervention, changes to PT-60° (28.4%, P = 0.020), PT-90° (26.1%, P = 0.055), and PT-180° (20.6%, P = 0.09) for each group were similar.
Conclusions
The addition of mechanical stress via RT to TRT maximizes improvements to muscle quality after complete SCI when compared with TRT administered alone. Our evidence shows that this intervention increases muscle size and strength while also improving muscle contractile properties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.