A new Stirling microrefrigeration system composed of arrays of silicon MEMS cooling elements has been designed and evaluated. The cooling elements are to he fabricated in a stacked array on a silicon wafer. A regenerator is placed between the compression (hot side) and expansion (cold side) diaphragms, which are driven electrostatically. Air at a pressure of 2 bar is the working fluid and is sealed in the system. Under operating conditions, the hot and cold diaphragms oscillate sinusoidally and out of phase such that heat is extracted to the expansion space and released from the compression space. Parametric study of the design shows the effects of phase lag between the hot space and cold space, swept volume ratio between the hot space and cold space, and dead volume ratio on the cooling power. Losses due to regenerator nonidealities are estimated and the effects of the operating frequency and the regenerator porosity on the cooler peiformance are explored. The optimal porosity for the best system coefficient of performance (COP) is identified.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.