We show that, assuming that quantum mechanics holds locally, the finite speed of information is the principle that limits all possible correlations between distant parties to be quantum mechanical as well. Local quantum mechanics means that a Hilbert space is assigned to each party, and then all local positive-operator-valued measurements are (in principle) available; however, the joint system is not necessarily described by a Hilbert space. In particular, we do not assume the tensor product formalism between the joint systems. Our result shows that if any experiment would give nonlocal correlations beyond quantum mechanics, quantum theory would be invalidated even locally.
We study how heralded qubit losses during the preparation of a two-dimensional cluster state, a universal resource state for one-way quantum computation, affect its computational power. Above the percolation threshold we present a polynomial-time algorithm that concentrates a universal cluster state, using resources that scale optimally in the size of the original lattice. On the other hand, below the percolation threshold, we show that single qubit measurements on the faulty lattice can be efficiently simulated classically. We observe a phase transition at the threshold when the amount of entanglement in the faulty lattice directly relevant to the computational power changes exponentially.arXiv:0709.1729v3 [quant-ph]
We introduce a graphical representation of stabilizer states and translate the action of Clifford operators on stabilizer states into graph operations on the corresponding stabilizer-state graphs. Our stabilizer graphs are constructed of solid and hollow nodes, with (undirected) edges between nodes and with loops and signs attached to individual nodes. We find that local Clifford transformations are completely described in terms of local complementation on nodes and along edges, loop complementation, and change of node type or sign. Additionally, we show that a small set of equivalence rules generates all graphs corresponding to a given stabilizer state; we do this by constructing an efficient procedure for testing the equality of any two stabilizer graphs.
We explore the joint activated dynamics exhibited by two quantum degrees of freedom: a cavity mode oscillator which is strongly coupled to a superconducting qubit in the strongly coherently driven dispersive regime. Dynamical simulations and complementary measurements show a range of parameters where both the cavity and the qubit exhibit sudden simultaneous switching between two metastable states. This manifests in ensemble averaged amplitudes of both the cavity and qubit exhibiting a partial coherent cancellation. Transmission measurements of driven microwave cavities coupled to transmon qubits show detailed features which agree with the theory in the regime of simultaneous switching.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.