BackgroundWound healing is a goal for advanced technology in the surgical space to benefit clinical outcomes. Surgical staplers are commonly used in a variety of open and minimally invasive abdominal and thoracic procedures. Assessment of wound healing traits, such as perfusion, has been challenging due to technical limitations. A novel technique that utilizes micro-computed tomography methodology to measure perfusion was designed to compare the micro-perfusion of staple lines between commercial stapler reloads that employ different staple height strategies.Materials and methodsFollowing an Institutional Animal Care and Use Committee-approved protocol, rats were euthanized and immediately heparinized prior to a subtotal gastrectomy with either graduated-height or single-height staples. Rats were then perfused with barium, following which stomachs were removed and immediately fixed in formalin to prevent degradation. Stomachs were then imaged using micro-computed tomography and subsequent analysis was utilized to quantify fluid volume and patent vasculature proximity to staples within the staple line region for each group.ResultsAverage perfusion volume was significantly higher with graduated-height staples (0.33% ± 0.18%) compared to single-height staples (0.16% ± 0.09%, P=0.011). Average vessel-to-staple line distance was not significant but trended lower with graduated-height staples (0.35±0.02 mm) compared to single-height staples (0.36±0.03 mm, P=0.18).DiscussionGraduated-height staples had significantly higher perfusion volume than single-height staples, which likely has a downstream benefit on wound healing and clinical outcomes.ConclusionThis study shows a higher perfusion volume around the staple lines using graduated-height staples as compared to single-height staples and this may contribute to better wound healing in patients.
The objective was to determine the effects of oral lithium chloride supplementation on bone strength and mass in broiler chickens. Ninety-six broilers were assigned to 1 of 2 treatment groups (lithium chloride or control; n=48/treatment). Beginning at 1 or 3 wk of age, chickens were administered lithium chloride (20 mg/kg body weight) or water daily by oral gavage. At 6 wk of age, chickens were euthanized and bone and muscle samples were collected. A 24 h lithium chloride (20 mg/kg body weight) challenge determined that serum lithium chloride increased within 2 h and cleared the system within 24 h, demonstrating the effective delivery of lithium chloride. Treatment did not influence body weight (P≥0.20) or feed intake (P≥0.81), demonstrating that lithium chloride did not negatively affect broiler growth. To determine bone strength, 3-point bending was performed on the femora and tibiae obtained from control and lithium chloride-treated birds in the 1 wk group. Lithium chloride-treated birds had a 22% reduction in stiffness compared with control in the femora (P=0.02) without a corresponding reduction in elastic modulus. No differences were observed in yield or ultimate load and in the corresponding calculations of stresses (P≥0.26). The toughness of tibiae was not altered in lithium chloride compared with control (P=0.11). Bone length and micro-CT imaging were performed on the tibiae of control and lithium chloride groups. No differences (P≥0.52) in bone length, cortical or trabecular bone volume, trabecular thickness, number, or spacing were observed. Lithium chloride treatment did not affect pectoralis muscle color or lipid oxidation (P>0.05). In conclusion, lithium chloride treatment in broilers did not negatively affect growth or meat quality. A reduction in bone stiffness of the femur with lithium chloride treatment was observed, however unlike the mouse model, the dosages of lithium chloride used in the current study did not result in anabolic effects on broiler long bones.
Knee osteoarthritis (OA) is a disease that compromises the cartilage inside the knee joint, resulting in pain and impaired mobility. Bracing is a common treatment, however currently prescribed braces cannot treat bicompartmental knee OA, fail to consider the muscle weakness that typically accompanies the disease, and utilize hinges that restrict the knee's natural biomechanics. We have developed and evaluated a brace which addresses these shortcomings. This process has respected three principal design goals: reducing the load experienced across the entire knee joint, generating a supportive moment to aid the muscles in shock absorption, and interfering minimally with gait kinematics. Load reduction is achieved via the compression of medial and lateral leaf springs, and magnetorheological dampers provide the supportive moment during knee loading. A novel, personalized joint mechanism replaces a traditional hinge to reduce interference with knee kinematics. Using motion capture gait analysis, we evaluated the basic functionality of a prototype device. We calculated, via inverse dynamics analysis, the reaction forces at the knee joint and the moments generated by the leg muscles during gait. Comparing these values between braced and unbraced trials allowed us to evaluate the system's effectiveness. Kinematic measurements showed the extent to which the brace interfered with natural gait characteristics. Of the three design goals: a reduction in knee contact forces was demonstrated; increased shock absorption was observed, but not to statistical significance; and natural gait was largely preserved. The techniques presented in this paper could lead to improved OA treatment through patient-specific braces.
The incorporation of sensors onto the stapling platform has been investigated to overcome the disconnect in our understanding of tissue handling by surgical staplers. The goal of this study was to explore the feasibility of in vivo porcine tissue differentiation using bioimpedance data and machine learning methods. In vivo electrical impedance measurements were obtained in 7 young domestic pigs, using a logarithmic sweep of 50 points over a frequency range of 100 Hz to 1 MHz. Tissues studied included lung, liver, small bowel, colon, and stomach, which was further segmented into fundus, body, and antrum. The data was then parsed through MATLAB's classification learner to identify the best algorithm for tissue type differentiation. The most effective classification scheme was found to be cubic support vector machines with 86.96% accuracy. When fundus, body and antrum were aggregated together as stomach, the accuracy improved to 88.03%. The combination of stomach, small bowel, and colon together as GI tract improved accuracy to 99.79% using fine k nearest neighbors. The results suggest that bioimpedance data can be effectively used to differentiate tissue types in vivo. This study is one of the first that combines in vivo bioimpedance tissue data across multiple tissue types with machine learning methods.
Knee pain, muscle weakness, and their associated medical conditions cause a significant loss of mobility for a large and growing number of people. Accordingly, the need for effective, simple, and noninvasive methods for controlling these problems is becoming more apparent. To that end, we have designed a quasi-passive knee-orthosis that employs a “hybrid joint mechanism” as a central component. This joint combines a four-bar linkage with a compliant mechanism to follow natural knee motion. A poorly fitted knee orthosis can detrimentally affect its effectiveness due to the large variability in the patient-specific knee motion. Our design can be optimized to fit a given user, based on both motion capture data and their particular condition, which leads to several potential advantages over standardized hinges. In this paper, we will explore the design and individualization process of the joint mechanism as well as the background covering various design decisions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.