A clear understanding of the genetic basis of antibiotic resistance in Mycobacterium tuberculosis is required to accelerate the development of rapid drug susceptibility testing methods based on genetic sequence.Raw genotype–phenotype correlation data were extracted as part of a comprehensive systematic review to develop a standardised analytical approach for interpreting resistance associated mutations for rifampicin, isoniazid, ofloxacin/levofloxacin, moxifloxacin, amikacin, kanamycin, capreomycin, streptomycin, ethionamide/prothionamide and pyrazinamide. Mutation frequencies in resistant and susceptible isolates were calculated, together with novel statistical measures to classify mutations as high, moderate, minimal or indeterminate confidence for predicting resistance.We identified 286 confidence-graded mutations associated with resistance. Compared to phenotypic methods, sensitivity (95% CI) for rifampicin was 90.3% (89.6–90.9%), while for isoniazid it was 78.2% (77.4–79.0%) and their specificities were 96.3% (95.7–96.8%) and 94.4% (93.1–95.5%), respectively. For second-line drugs, sensitivity varied from 67.4% (64.1–70.6%) for capreomycin to 88.2% (85.1–90.9%) for moxifloxacin, with specificity ranging from 90.0% (87.1–92.5%) for moxifloxacin to 99.5% (99.0–99.8%) for amikacin.This study provides a standardised and comprehensive approach for the interpretation of mutations as predictors of M. tuberculosis drug-resistant phenotypes. These data have implications for the clinical interpretation of molecular diagnostics and next-generation sequencing as well as efficient individualised therapy for patients with drug-resistant tuberculosis.
Whole genome sequencing (WGS) of Mycobacterium tuberculosis has rapidly evolved from a research tool to a clinical application for the diagnosis and management of tuberculosis and in public health surveillance. This evolution has been facilitated by the dramatic drop in costs, advances in technology, and concerted efforts to translate sequencing data into actionable information. There is however a risk that, in the absence of a consensus and international standards, the widespread use of WGS technology may result in data and processes that lack harmonisation, comparability and validation. In this review, we outline the current landscape of WGS pipelines and applications and set out best practices for M. tuberculosis WGS, including standards for bioinformatics pipelines, curated repository of resistance-causing variants, phylogenetic analyses, quality control processes, and standardised reporting. 1. Introduction Mycobacterium tuberculosis complex (Mtbc) pathogens are collectively the top infectious disease killer globally, causing 10 million new tuberculosis (TB) cases annually 1. Increasingly, 95 new TB cases are already resistant to rifampicin and isoniazid (termed multidrug resistance; 96 MDR-TB), the key first line drugs 1. Tackling the spread and drug resistance burden of this pathogen requires concerted global effort in prevention, diagnosis, treatment and surveillance.
Background The diagnosis of multidrug resistant and extensively drug resistant tuberculosis is a global health priority. Whole genome sequencing of clinical Mycobacterium tuberculosis isolates promises to circumvent the long wait times and limited scope of conventional phenotypic antimicrobial susceptibility, but gaps remain for predicting phenotype accurately from genotypic data especially for certain drugs. Our primary aim was to perform an exploration of statistical learning algorithms and genetic predictor sets using a rich dataset to build a high performing and fast predicting model to detect anti-tuberculosis drug resistance. Methods We collected targeted or whole genome sequencing and conventional drug resistance phenotyping data from 3601 Mycobacterium tuberculosis strains enriched for resistance to first- and second-line drugs, with 1228 multidrug resistant strains. We investigated the utility of (1) rare variants and variants known to be determinants of resistance for at least one drug and (2) machine and statistical learning architectures in predicting phenotypic drug resistance to 10 anti-tuberculosis drugs. Specifically, we investigated multitask and single task wide and deep neural networks, a multilayer perceptron, regularized logistic regression, and random forest classifiers. Findings The highest performing machine and statistical learning methods included both rare variants and those known to be causal of resistance for at least one drug. Both simpler L2 penalized regression and complex machine learning models had high predictive performance. The average AUCs for our highest performing model was 0.979 for first-line drugs and 0.936 for second-line drugs during repeated cross-validation. On an independent validation set, the highest performing model showed average AUCs, sensitivities, and specificities, respectively, of 0.937, 87.9%, and 92.7% for first-line drugs and 0.891, 82.0% and 90.1% for second-line drugs. Our method outperforms existing approaches based on direct association, with increased sum of sensitivity and specificity of 11.7% on first line drugs and 3.2% on second line drugs. Our method has higher predictive performance compared to previously reported machine learning models during cross-validation, with higher AUCs for 8 of 10 drugs. Interpretation Statistical models, especially those that are trained using both frequent and less frequent variants, significantly improve the accuracy of resistance prediction and hold promise in bringing sequencing technologies closer to the bedside.
Drug-resistant tuberculosis poses a persistent public health threat. The ReSeqTB platform is a collaborative, curated knowledgebase, designed to standardize and aggregate global Mycobacterium tuberculosis complex (MTBC) variant data from whole genome sequencing (WGS) with phenotypic drug susceptibility testing (DST) and clinical data. We developed a unified analysis variant pipeline (UVP) (https://github.com/CPTR-ReSeqTB/UVP) to identify variants and assign lineage from MTBC sequence data. Stringent thresholds and quality control measures were incorporated in this open source tool. The pipeline was validated using a well-characterized dataset of 90 diverse MTBC isolates with conventional DST and DNA Sanger sequencing data. The UVP exhibited 98.9% agreement with the variants identified using Sanger sequencing and was 100% concordant with conventional methods of assigning lineage. We analyzed 4636 publicly available MTBC isolates in the ReSeqTB platform representing all seven major MTBC lineages. The variants detected have an above 94% accuracy of predicting drug based on the accompanying DST results in the platform. The aggregation of variants over time in the platform will establish confidence-graded mutations statistically associated with phenotypic drug resistance. These tools serve as critical reference standards for future molecular diagnostic assay developers, researchers, public health agencies and clinicians working towards the control of drug-resistant tuberculosis.
Neisseria gonorrhoeae is the causative agent of gonorrhea, a sexually transmitted infection (STI) of major importance. As a result of antibiotic resistance, there are now limited options for treating patients. We collected draft genome sequence data and associated metadata data on 76 N. gonorrhoeae strains from around the globe and searched for known determinants of antibiotics resistance within the strains. The population structure and evolutionary forces within the pathogen population were analyzed. Our results indicated a cosmopolitan gonoccocal population mainly made up of five subgroups. The estimated ratio of recombination to mutation (r/m = 2.2) from our data set indicates an appreciable level of recombination occurring in the population. Strains with resistance phenotypes to more recent antibiotics (azithromycin and cefixime) were mostly found in two of the five population subgroups.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.