Emerging infectious diseases pose one of the greatest threats to human health and biodiversity. Phylodynamics is often used to infer epidemiological parameters essential for guiding intervention strategies for human viruses such as severe acute respiratory syndrome coronavirus 2 (SARS-Cov-2). Here, we applied phylodynamics to elucidate the epidemiological dynamics of Tasmanian devil facial tumor disease (DFTD), a fatal, transmissible cancer with a genome thousands of times larger than that of any virus. Despite prior predictions of devil extinction, transmission rates have declined precipitously from ~3.5 secondary infections per infected individual to ~1 at present. Thus, DFTD appears to be transitioning from emergence to endemism, lending hope for the continued survival of the endangered Tasmanian devil. More generally, our study demonstrates a new phylodynamic analytical framework that can be applied to virtually any pathogen.
Understanding the genetic basis of disease-related phenotypes, such as cancer susceptibility, is crucial for the advancement of personalized medicine. Although most cancers are somatic in origin, a small number of transmissible cancers have been documented. Two such cancers have emerged in the Tasmanian devil (Sarcophilus harrisii) and now threaten the species with extinction. Recently, cases of natural tumor regression in Tasmanian devils infected with the clonally contagious cancer have been detected. We used whole-genome sequencing and FST-based approaches to identify the genetic basis of tumor regression by comparing the genomes of seven individuals that underwent tumor regression with those of three infected individuals that did not. We found three highly differentiated candidate genomic regions containing several genes related to immune response and/or cancer risk, indicating that the genomic basis of tumor regression was polygenic. Within these genomic regions, we identified putative regulatory variation in candidate genes but no nonsynonymous variation, suggesting that natural tumor regression may be driven, at least in part, by differential host expression of key loci. Comparative oncology can provide insight into the genetic basis of cancer risk, tumor development, and the pathogenicity of cancer, particularly due to our limited ability to monitor natural, untreated tumor progression in human patients. Our results support the hypothesis that host immune response is necessary for triggering tumor regression, providing candidate genes that may translate to novel treatments in human and nonhuman cancers.
Maintenance of adaptive genetic variation has long been a goal of management of natural populations, but only recently have genomic tools allowed identification of specific loci associated with fitness-related traits in species of conservation concern. This raises the possibility of managing for genetic variation directly relevant to specific threats, such as those due to climate change or emerging infectious disease. Tasmanian devils (Sarcophilus harrisii) face the threat of a transmissible cancer, devil facial tumor disease (DFTD), that has decimated wild populations and led to intensive management efforts. Recent discoveries from genomic and modeling studies reveal how natural devil populations are responding to DFTD, and can inform management of both captive and wild devil populations. Notably, recent studies have documented genetic variation for disease-related traits and rapid evolution in response to DFTD, as well as potential mechanisms for disease resistance such as immune response and tumor regression in wild devils. Recent models predict dynamic persistence of devils with or without DFTD under a variety of modeling scenarios, although at much lower population densities than before DFTD emerged, contrary to previous predictions of extinction. As a result, current management that focuses on captive breeding and release for maintaining genome-wide genetic diversity or demographic supplementation of populations could have negative consequences. Translocations of captive devils into wild populations evolving with DFTD can cause outbreeding depression and/or increases in the force of infection and thereby the severity of the epidemic, and we argue that these risks outweigh any benefits of demographic supplementation in wild populations. We also argue that genetic variation at loci associated with DFTD should be monitored in both captive and wild populations, and that as our understanding of DFTD-related genetic variation improves, considering genetic management approaches to target this variation is warranted in developing conservation strategies for Tasmanian devils.
Spontaneous tumor regression has been documented in a small proportion of human cancer patients, but the specific mechanisms underlying tumor regression without treatment are not well-understood. Tasmanian devils are threatened with extinction from a transmissible cancer due to universal susceptibility and a near 100% case fatality rate. In over 10,000 cases, fewer than 20 instances of natural tumor regression have been detected. Previous work in this system has focused on Tasmanian devil genetic variation associated with the regression phenotype. Here, we used comparative and functional genomics to identify tumor genetic variation associated with tumor regression. We show that a single point mutation in the 5' untranslated region of the putative tumor suppressor RASL11A significantly contributes to tumor regression. RASL11A was expressed in regressed tumors but silenced in wild-type, non-regressed tumors, consistent with RASL11A down-regulation in human cancers. Induced RASL11A expression significantly reduced tumor cell proliferation in vitro. The RAS pathway is frequently altered in human cancers, and RASL11A activation may provide a therapeutic treatment option for Tasmanian devils as well as a general mechanism for tumor inhibition.
Chelonid Alphaherpesvirus 5 (ChHV5) has long been associated with fibropapillomatosis (FP) tumor disease in marine turtles. Presenting primarily in juvenile animals, FP results in fibromas of the skin, connective tissue, and internal organs, which may indirectly affect fitness by obstructing normal turtle processes. ChHV5 is near-universally present in tumorous tissues taken from affected animals, often at very high concentrations. However, there is also considerable asymptomatic carriage amongst healthy marine turtles, suggesting that asymptomatic hosts play an important role in disease ecology. Currently, there is a paucity of studies investigating variation in viral genetics between diseased and asymptomatic hosts, which could potentially explain why only some ChHV5 infections lead to tumor formation. Here, we generated a database containing DNA from over 400 tissue samples taken from green and loggerhead marine turtles, including multiple tissue types, a twenty year time span, and both diseased and asymptomatic animals. We used two molecular detection techniques, quantitative (q)PCR and nested PCR, to characterize the presence and genetic lineage of ChHV5 in each sample. We found that nested PCR across multiple loci out-performed qPCR and is a more powerful technique for determining infection status. Phylogenetic reconstruction of three viral loci from all ChHV5-positive samples indicated widespread panmixia of viral lineages, with samples taken across decades, species, disease states, and tissues all falling within the same evolutionary lineages. Haplotype networks produced similar results in that viral haplotypes were shared across species, tissue types and disease states with no evidence that viral lineages associated significantly with disease dynamics. Additionally, tests of selection on viral gene trees indicated signals of selection dividing major clades, though this selection did not divide sample categories. Based on these data, neither the presence of ChHV5 infection nor neutral genetic divergence between viral lineages infecting a juvenile marine turtle is sufficient to explain the development of FP within an individual.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.