We analyzed dendritic cell (DC) and NK cell compartments in relation to CD4 recovery in 21 HIV-infected subjects followed to <50 copies/ml once starting antiretroviral therapy (ART) and observed for 52 wk of sustained suppression. Although CD4 counts increased in all subjects in response to ART, we observed a restoration of functional plasmacytoid DC (PDC) after 52 wk of sustained suppression under ART (from 1850 cells/ml to 4550 cells/ml) to levels comparable to controls (5120 cells/ml) only in subjects with a low baseline viral load, which also rapidly suppressed to <50 copies/ml upon ≤60 days from ART initiation. Recovery of PDC at week 52 correlates with level of CD95 expression on CD8 T cells and PDC frequency following first ART suppression. NK cytotoxic activity increased rapidly upon viral suppression (VS) and correlated with PDC function at week 52. However, restoration of total NK cells was incomplete even after 52 wk on ART (73 cells/μl vs 122 cells/μl in controls). Direct reconstitution experiments indicate that NK cytotoxic activity against virally infected target cells requires DC/NK cooperation, and can be recovered upon sustained VS and recovery of functional PDC (but not myeloid DC) from ART-suppressed subjects. Our data indicate that viremic HIV-infected subjects may have different levels of reconstitution of DC and NK-mediated function following ART, with subjects with lower initial viremia and the greatest reduction of baseline immune activation at VS achieving the greatest level of innate effector cell reconstitution.
Dendritic cell-specific intercellular adhesion molecule-3-grabbing nonintegrin (DC-SIGN) has been described as an attachment molecule for human immunodeficiency virus type 1 (HIV-1) with the potential to mediate its transmission. We examined DC-SIGN expression in monocyte-derived macrophages (MDM) and its role in viral transmission when MDM were exposed to interleukin (IL)-13, IL-4, or interferon-gamma (IFN-gamma). We show that IL-13 and IL-4 increase transcripts, total protein, and cell-surface expression of DC-SIGN in all MDM tested, IFN-gamma results ranged from no change to up-regulation of surface expression, and message and total protein were, respectively, induced in all and 86% of donors tested. Transmission experiments of HIV-1 X4 between cytokine-treated MDM to Sup-T1 cells showed no association between total transmission and DC-SIGN up-regulation. IL-4 but not IL-13 resulted in a less than twofold increase in MDM viral transmission to CD4+ T cells in spite of a fourfold up-regulation in DC-SIGN expression by either cytokine. In contrast, IFN-gamma treatment induced a decrease in total transmission by at least two-thirds, despite its induction of DC-SIGN. Soluble mannan resulted in a greater inhibition of viral transmission to CD4+ T cells than neutralizing anti-DC-SIGN monoclonal antibody (67-75% vs. 39-48%), supporting the role of mannose-binding receptors in viral transmission. Taken together, results show that DC-SIGN regulation in MDM does not singly predict the transmission potential of this cell type.
Children achieve partial reconstitution of myeloid and plasmacytoid DCs and NK cells during viral suppression; irrespective of viral load, a clinical history of decreasing CD4+ cell percentage is associated with greater depletion of these subsets. We hypothesize that the evaluation of selected innate-immunity effector cells may serve as a marker of CD4+ cell loss in pediatric HIV-1 infection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.