Studying the interactions between nanoengineered materials and biological systems plays a vital role in the development of biological applications of nanotechnology and the improvement of our fundamental understanding of the bio-nano interface. A significant barrier to progress in this multidisciplinary area is the variability of published literature with regards to characterizations performed and experimental details reported. Here, we suggest a 'minimum information standard' for experimental literature investigating bio-nano interactions. This standard consists of specific components to be reported, divided into three categories: material characterization, biological characterization and details of experimental protocols. Our intention is for these proposed standards to improve reproducibility, increase quantitative comparisons of bio-nano materials, and facilitate meta analyses and in silico modelling.
The use of natural compounds for preparing hybrid molecular films-such as surface coatings made from metal-phenolic networks (MPNs)-is of interest in areas ranging from catalysis and separations to biomedicine. However, to date, the film growth of MPNs has been observed to proceed in discrete steps (≈10 nm per step) where the coordination-driven interfacial assembly ceases beyond a finite time (≈1 min). Here, it is demonstrated that the assembly process for MPNs can be modulated from discrete to continuous by utilizing solid-state reactants (i.e., rusted iron objects). Gallic acid etches iron from rust and produces chelate complexes in solution that continuously assemble at the interface of solid substrates dispersed in the system. The result is stable, continuous growth of MPN films. The presented double dynamic process-that is, etching and self-assembly-provides new insights into the chemistry of MPN assembly while enabling control over the MPN film thickness by simply varying the reaction time.
Materials assembled by coordination interactions between naturally abundant polyphenols and metals are of interest for a wide range of applications, including crystallization, catalysis, and drug delivery. Such an interest has led to the development of thin films with tunable, dynamic properties, however, creating bulk materials remains a challenge. Reported here is a class of metallogels formed by direct gelation between inexpensive, naturally abundant tannic acid and group(IV) metal ions. The metallogels exhibit diverse properties, including self-healing and transparency, and can be doped with various materials by in situ co-gelation. The robustness and flexibility, combined with the ease, low cost, and scalability of the coordination-driven assembly process make these metallogels potential candidates for chemical, biomedical, and environmental applications.
Nanoengineered materials offer tremendous promise for developing the next generation of therapeutics. We are transitioning from simple research questions, such as "can this particle eradicate cancer cells?" to more sophisticated ones like "can we design a particle to preferentially deliver cargo to a specific cancer cell type?" These developments are poised to usher in a new era of nanoengineered drug delivery systems. We primarily work with templating methods for engineering polymer particles and investigate their biological interactions. Templates are scaffolds that facilitate the formation of particles with well-controlled size, shape, structure, stiffness, stability, and surface chemistry. In the past decade, breakthroughs in engineering new templates, combined with advances in coating techniques, including layer-by-layer (LbL) assembly, surface polymerization, and metal-phenolic network (MPN) coordination chemistry, have enabled particles with specific physicochemical properties to be engineered. While materials science offers an ever-growing number of new synthesis techniques, a central challenge of therapeutic delivery has become understanding how nanoengineered materials interact with biological systems. Increased collaboration between chemists, biologists, and clinicians has resulted in a vast research output on bio-nano interactions. Our understanding of cell-particle interactions has grown considerably, but conventional in vitro experimentation provides limited information, and understanding how to bridge the in vitro/in vivo gap is a continuing challenge. As has been demonstrated in other fields, there is now a growing interest in applying computational approaches to advance this area. A considerable knowledge base is now emerging, and with it comes new and exciting opportunities that are already being capitalized on through the translation of materials into the clinic. In this Account, we outline our perspectives gained from a decade of work at the interface between polymer particle engineering and bio-nano interactions. We divide our research into three areas: (i) biotrafficking, including cellular association, intracellular transport, and biodistribution; (ii) biodegradation and how to achieve controlled, responsive release of therapeutics; and (iii) applications, including drug delivery, controlling immunostimulatory responses, biosensing, and microreactors. There are common challenges in these areas for groups developing nanoengineered therapeutics. A key "lesson-learned" has been the considerable challenge of staying informed about the developments relevant to this field. There are a number of reasons for this, most notably the interdisciplinary nature of the work, the large numbers of researchers and research outputs, and the limited standardization in technique nomenclature. Additionally, a large body of work is being generated with limited central archiving, other than vast general databases. To help address these points, we have created a web-based tool to organize our past, present, and fut...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.