Artificial neural networks have recently achieved many successes in solving sequential processing and planning tasks. Their success is often ascribed to the emergence of the task’s low-dimensional latent structure in the network activity – i.e., in the learned neural representations. Here, we investigate the hypothesis that a means for generating representations with easily accessed low-dimensional latent structure, possibly reflecting an underlying semantic organization, is through learning to predict observations about the world. Specifically, we ask whether and when network mechanisms for sensory prediction coincide with those for extracting the underlying latent variables. Using a recurrent neural network model trained to predict a sequence of observations we show that network dynamics exhibit low-dimensional but nonlinearly transformed representations of sensory inputs that map the latent structure of the sensory environment. We quantify these results using nonlinear measures of intrinsic dimensionality and linear decodability of latent variables, and provide mathematical arguments for why such useful predictive representations emerge. We focus throughout on how our results can aid the analysis and interpretation of experimental data.
Neural networks have achieved many recent successes in solving sequential processing and planning tasks. Their success is often ascribed to the emergence of the task's low-dimensional latent structure in the network activity -i.e., in the learned neural representations. Similarly, biological neural circuits and in particular the hippocampus may produce representations that organize semantically related episodes. Here, we investigate the hypothesis that representations with low-dimensional latent structure, reflecting such semantic organization, result from learning to predict observations about the world. Specifically, we ask whether and when network mechanisms for sensory prediction coincide with those for extracting the underlying latent variables. Using a recurrent neural network model trained to predict a sequence of observations in a simulated spatial navigation task, we show that network dynamics exhibit low-dimensional but nonlinearly transformed representations of sensory inputs that capture the latent structure of the sensory environment. We quantify these results using nonlinear measures of intrinsic dimensionality which highlight the importance of the predictive aspect of neural representations, and provide mathematical arguments for when and why these representations emerge. We focus throughout on how our results can aid the analysis and interpretation of experimental data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.