Nanomechanical motion of bacteria adhered to a chemically functionalized silicon surface is studied by means of a microcantilever. A non-specific binding agent is used to attach Escherichia coli (E. coli) to the surface of a silicon microcantilever. The microcantilever is kept in a liquid medium, and its nanomechanical fluctuations are monitored using an optical displacement transducer. The motion of the bacteria couples efficiently to the microcantilever well below its resonance frequency, causing a measurable increase in the microcantilever fluctuations. In the time domain, the fluctuations exhibit large-amplitude low-frequency oscillations. In corresponding frequencydomain measurements, it is observed that the mechanical energy is focused at low frequencies with a 1/f a -type power law. A basic physical model is used for explaining the observed spectral distribution of the mechanical energy. These results lay the groundwork for understanding the motion of microorganisms adhered to surfaces and for developing micromechanical sensors for bacteria.
Robotic Refueling Mission-3 (RRM3) is an external payload on the International Space Station (ISS) to demonstrate the techniques for storing and transferring a cryogenic fuel on orbit. RRM3 was designed and built at the National Aeronautics and Space Administration/Goddard Space Flight Center (NASA/GSFC). Initial testing was performed at GSFC using liquid nitrogen and liquid argon. Final testing and flight fill of methane was performed at the NASA Kennedy Space Center (KSC) to take advantage of KSC’s facilities and expertise for handling a combustible cryogen. This paper gives an overview of the process and challenges of developing the payload and the results of its on-orbit performance.
The current rate of incidence of cataracts is increasing faster than treatment capacity, and an autonomous robotic system is proposed to mitigate this by carrying out cataract surgeries. The robot is composed of a three actuator RPS parallel mechanism in series with an actuated rail mounted roller that moves around the eye, and is designed to perform a simplified version of the extracapsular cataract surgery procedure autonomously. The majority of the design work has been completed, and it is projected that the system will have a tool accuracy of 0.167 mm, 0.141 mm, and 0.290 mm in the x, y, and z directions, respectively. Such accuracies are within the acceptable errors of 1.77mm in the x and y directions of the horizontal plane, as well as 1.139 mm in the vertical z direction. Tracking of the tool when moving at 2 mm/s should give increments of 0.08 mm per frame, ensuring constant visual feedback. Future work will involve completing construction and testing of the device, as well as adding the capability to perform a more comprehensive surgical procedure if time allows.
Oscillating heat pipes (OHPs) represent a promising passive mechanism for the removal or spreading of heat. While simple to construct, the fluid and thermodynamics of these devices are still poorly understood. There is debate over whether the primary heat transfer mechanism is due to sensible heating of the liquid phase or due to latent heat transfer through phase change. To answer this question an experimental apparatus was constructed to provide time and space resolved temperature and heat transfer data across the face of an operating OHP with HFE-7000 as the working fluid. This experiment utilized temperature sensitive paint alongside visual recording of the fluid motion in order to determine the relative latent and sensible contribution to the overall heat transfer. The OHP was tested with input powers ranging from 2.6 W to 10.1 W. It found that latent heat transfer was the dominant heat transfer mechanism, accounting for between 65% and 83% of the total heat transferred in all cases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.