The multiplicity of proteins compared with genes in mammals owes much to alternative splicing. Splicing signals are so subtle and complex that small perturbations may allow the production of new mRNA variants. However, the flexibility of splicing can also be a liability, and several genetic diseases result from single-base changes that cause exons to be skipped during splicing. Conventional oligonucleotide strategies can block reactions but cannot restore splicing. We describe here a method by which the use of a defective exon was restored. Spinal muscular atrophy (SMA) results from mutations of the Survival Motor Neuron (SMN) gene. Mutations of SMN1 cause SMA, whereas SMN2 acts as a modifying gene. The two genes undergo alternative splicing with SMN1, producing an abundance of full-length mRNA transcripts, whereas SMN2 predominantly produces exon 7-deleted transcripts. This discrepancy is because of a single nucleotide difference in SMN2 exon 7, which disrupts an exonic splicing enhancer containing an SF2͞ASF binding site. We have designed oligoribonucleotides that are complementary to exon 7 and contain exonic splicing enhancer motifs to provide trans-acting enhancers. These tailed oligoribonucleotides increased SMN2 exon 7 splicing in vitro and rescued the incorporation of SMN2 exon 7 in SMA patient fibroblasts. This treatment also resulted in the partial restoration of gems, intranuclear structures containing SMN protein that are severely reduced in patients with SMA. The use of tailed antisense oligonucleotides to recruit positively acting factors to stimulate a splicing reaction may have therapeutic applications for genetic disorders, such as SMA, in which splicing patterns are altered. P roximal spinal muscular atrophy (SMA) is an autosomal recessive disorder characterized by the degeneration of the motor neurons in the anterior horn of the spinal cord, resulting in muscular atrophy and weakness. The overall incidence of SMA is 1 in 10,000 live births, with a carrier frequency of 1 in 50. Onset is primarily in childhood, and three different forms are recognized, type I SMA being the most severe form and type III SMA at the milder end of the scale. Children affected by SMA I never sit and usually die within the first year of life, whereas those with type III acquire the ability to walk and have a normal life expectancy. An intermediate category (SMA II) is also recognized, where affected individuals can sit unsupported but cannot walk (1). The gene implicated in SMA is the Survival of Motor Neuron (SMN) gene located on chromosome 5q13 (2). It consists of eight exons, the first seven of which encode a 294-aa protein (3). The human SMN gene exists as a mirror-image duplication with a telomeric (SMN1) and a centromeric (SMN2) copy. Mutations in SMN1 cause SMA (4), whereas the copy number of the residual SMN2 genes is believed to modify the severity of the phenotype, as suggested by the increased copy number in patients with a milder disease course (5). Deletions of both SMN1 and SMN2 have never been observed ...
Deletions and point mutations in the gene encoding the cytoskeletal protein dystrophin and its isoforms cause either the severe progressive myopathy Duchenne muscular dystrophy (DMD) or the milder Becker muscular dystrophy (BMD), largely depending on whether the reading frame is lost or maintained respectively. Frameshift mutations tend to result in a lack of dystrophin at the sarcolemma, destabilization of the membrane and degeneration of skeletal muscle. The mdx mouse is a valuable animal model of DMD as it bears a nonsense point mutation in exon 23 of the murine DMD gene leading to an absence of dystrophin expression in the muscle sarcolemma and muscular dystrophy. This report represents a novel approach to correct dystrophin deficiency at the post-transcriptional level by transfection of muscle cells with antisense RNA. Essentially, 2'- O -methyl oligoribonucleotides (2'OMeRNA) were delivered to the nuclei of primary mdx myoblasts in culture. Dystrophin expression was observed in the sarcolemma of transfected mdx myotubes after transfection by an oligonucleotide complementary to the 3' splice site of murine dystrophin intron 22. Direct sequencing of RT-PCR products from these cells revealed precise splicing of exon 22 to exon 30, skipping the mutant exon and creating a novel in-frame dystrophin transcript. As patients with comparable in-frame internal deletions show relatively mild myopathic symptoms, this may in the future offer a therapeutic approach for DMD, as well as for other inherited disorders.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.