Abstract. Knowledge of avian phylogeny is prerequisite to understanding the circumstances and timing of the diversification of birds and the evolution of morphological, behavioral, and life-history traits. Recent molecular datasets have helped to elucidate the three most basal clades in the tree of living birds, but relationships among neoavian orders (the vast majority of birds) remain frustratingly vexing. Here, we examine intron 7 of the -fibrinogen gene in the most taxonomically inclusive survey of DNA sequences of nonpasserine bird families and orders to date. These data suggest that Neoaves consist of two sister clades with ecological parallelisms comparable to those found between marsupial and placental mammals. Some members of the putative respective clades have long been recognized as examples of convergent evolution, but it was not appreciated that they might be parts of diverse parallel radiations. In contrast, some traditional orders of birds are suggested by these data to be polyphyletic, with representative families in both radiations.
Background: The phylogeny of shorebirds (Aves: Charadriiformes) and their putative sister groups was reconstructed using approximately 5 kilobases of data from three nuclear loci and two mitochondrial genes, and compared to that based on two other nuclear loci.
Animal taxa display a wide array of immune-type receptors that differ in their specificities, diversity, and mode of evolution. These molecules ensure effective recognition of potential pathogens for subsequent neutralization and clearance. We have characterized a family of putative immune recognition molecules in the colonial hydroid Hydractinia symbiolongicarpus. A complementary DNA fragment with high similarity to the sea urchin L: -rhamnose-binding lectin was isolated and used to screen 9.5 genome equivalents of a H. symbiolongicarpus bacterial artificial chromosome library. One of the resulting 19 positive clones was sequenced and revealed the presence of a 5,111-bp gene organized in 13 exons and 12 introns. The gene was predicted to encode a 726-amino acid secreted modular protein composed of a signal peptide, an anonymous serine-rich domain, eight thrombospondin type 1 repeats, and a L: -rhamnose-binding lectin domain. The molecule was thus termed Rhamnospondin (Rsp). Southern hybridization and sequence analyses indicated the presence of a second Rsp gene. The cDNA from both Rsp genes was sequenced in 18 individuals, revealing high levels of genetic polymorphism. Nucleotide substitutions were distributed throughout the molecule and showed a significantly higher number of synonymous substitutions per synonymous sites than its nonsynonymous counterparts. Whole-mount in situ hybridization and semi-quantitative reverse transcription polymerase chain reaction of microorganism-challenged colonies indicated that Rsp molecules were specifically and constitutively expressed in the hypostome of gastrozooids' mouth. Thus, the combination of (1) comparative analysis on domain composition and function, (2) polymorphism, and (3) expression patterns, suggest that Rsp genes encode a family of putative immune recognition receptors, which may act by binding microorganisms invading the colony through the polyp's mouth.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.