Ligand-stabilized copper selenide (Cu2−xSe) nanocrystals, approximately 16 nm in diameter, were synthesized by a colloidal hot injection method and coated with amphiphilic polymer. The nanocrystals readily disperse in water and exhibit strong near infrared (NIR) optical absorption with a high molar extinction coefficient of 7.7 × 107 cm−1 M−1 at 980 nm. When excited with 800 nm light, the Cu2−xSe nanocrystals produce significant photothermal heating with a photothermal transduction efficiency of 22%, comparable to nanorods and nanoshells of gold (Au). In vitro photothermal heating of Cu2−xSe nanocrystals in the presence of human colorectal cancer cell (HCT-116) led to cell destruction after 5 minutes of laser irradiation at 33 W/cm2, demonstrating the viabilitiy of Cu2−xSe nanocrystals for photothermal therapy applications.
Chalcopyrite copper indium sulfide (CuInS2) and copper indium gallium selenide (Cu(InxGa(1-x))-Se2; CIGS) nanocrystals ranging from approximately 5 to approximately 25 nm in diameter were synthesized by arrested precipitation in solution. The In/Ga ratio in the CIGS nanocrystals could be controlled by varying the In/Ga reactant ratio in the reaction, and the optical properties of the CulnS2 and CIGS nanocrystals correspond to those of the respective bulk materials. Using methods developed to produce uniform, crack-free micrometer-thick films, CulnSe2 nanocrystals were tested in prototype photovoltaic devices. As a proof-of-concept, the nanocrystal-based devices exhibited a reproducible photovoltaic response.
We report a chemical route to colloidal silicon (Si) nanocrystals, or quantum dots, with widely tunable average diameter, from less than 3 nm up to 90 nm and peak photoluminescence (PL) from visible wavelengths to the bulk band gap of Si at 1100 nm. The synthesis relies on the high temperature (>1100 °C) decomposition of hydrogen silsesquioxane (HSQ) to obtain Si quantum dots with good crystallinity and a narrow size distribution with tunable size embedded in SiO 2 . The oxide matrix is removed by hydrofluoric acid etching in the dark. Subsequent thermal hydrosilylation with alkenes yields free, solvent-dispersible Si nanocrystals with bright PL. The relationship between PL energy and size, exhaustively characterized by transmission electron microscopy (TEM), small-angle X-ray scattering (SAXS), and X-ray diffraction (XRD), is reported.
Cu(2)ZnSnS(4) (CZTS) is a promising new material for thin-film solar cells. Nanocrystal dispersions, or solar paints, present an opportunity to significantly reduce the production cost of photovoltaic devices. This communication demonstrates the colloidal synthesis of CZTS nanocrystals and their use in fabricating prototype solar cells with a power conversion efficiency of 0.23% under AM 1.5 illumination.
Soldering semiconductor nanoparticles
The optical and electronic properties of semiconductor nanoparticles can be tuned through changes in their size and composition. However, poor contact between interfaces can degrade nanoparticle performance in devices. Dolzhnikov
et al.
report the synthesis of a gel-like “solder” for metal chalcogenide nanoparticles, such as cadmium selenide and lead telluride, by cross-linking molecular wires of these materials.
Science
, this issue p.
425
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.