The mammalian hippocampus, comprised of serially connected subfields, participates in diverse behavioral and cognitive functions. It has been postulated that parallel circuitry embedded within hippocampal subfields may underlie such functional diversity. We sought to identify, delineate, and manipulate this putatively parallel architecture in the dorsal subiculum, the primary output subfield of the dorsal hippocampus. Population and single-cell RNA-seq revealed that the subiculum can be divided into two spatially adjacent subregions associated with prominent differences in pyramidal cell gene expression. Pyramidal cells occupying these two regions differed in their long-range inputs, local wiring, projection targets, and electrophysiological properties. Leveraging gene-expression differences across these regions, we use genetically restricted neuronal silencing to show that these regions differentially contribute to spatial working memory. This work provides a coherent molecular-, cellular-, circuit-, and behavioral-level demonstration that the hippocampus embeds structurally and functionally dissociable streams within its serial architecture.
We built a rig to perform patch-clamp and extracellular recordings from the same neuron in vivo. In this setup, the axes of two micromanipulators are precisely aligned and their relative position tracked in real-time, allowing us to accurately target patch-clamp recordings to neurons near an extracellular probe. We used this setup to generate a publicly-available dataset where a cortical neuron's spiking activity is recorded in patch-clamp next to a dense CMOS Neuropixels probe. "Ground-truth" datasets of this kind are rare but valuable to the neuroscience community, as they power the development and improvement of spike-sorting and analysis algorithms, tethering them to empirical observations. In this article, we describe our approach and report exploratory and descriptive analysis on the resulting dataset. We study the detectability of patch-clamp spikes on the extracellular probe, within-unit reliability of spike features and spatiotemporal dynamics of the action potential waveform. We open discussion and collaboration on this dataset through an online repository, with a view to producing follow-up publications. PrologueOur efforts to record from the same neuron in vivo using patch-clamp and dense extracellular probes have resulted in three outputs: a publicly-available dataset (http://bit.ly/paired_recs), a manuscript, and a code repository (http://bit.ly/paired_git). Together, these three components form the publication arising from the experiments we have performed. The role of the dataset is to be downloaded and re-used. The role of the manuscript is to describe the experimental methods through which we acquired the dataset, explain it and showcase which types of questions it can be used to address. The repository has two roles: first, promoting reproducibility and error correction.By making our analysis and figure-generation code freely-available, we wish to make our analysis procedures clear and enable the reader to reproduce our results from the raw data, alerting us to any potential mistakes. Second, the repository will form a living, dynamic and interactive component of the publication: a forum for open collaboration on this dataset. Any interested scientists can contribute to it, joining us in detailed exploration of these recordings with a view to producing follow-up publications in which they will be credited for their input.Why did we opt to publish this way? The first reason is that the very nature of the project we here describe -recording the same neuron with patch-clamp and extracellular probes -invites an open science and open source approach. This is because the primary use of this type of "ground truth" validation data is to aid the development of new sorting and analysis algorithms, as well as to benchmark and improve existing ones. The second reason is that despite being conceptually very simple, this project generated a large and complex dataset that can be tackled in many ways and used to address different types of question. Some of these questions are beyond the reach of our analytical...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.