A study of the adsorption equilibrium of solution-phase CdS quantum dots (QDs) and acid-derivatized viologen ligands (N-[1-heptyl],N'-[3-carboxypropyl]-4,4'-bipyridinium dihexafluorophosphate, V(2+)) reveals that the structure of the surfaces of the QDs depends on their concentration. This adsorption equilibrium is monitored through quenching of the photoluminescence of the QDs by V(2+) upon photoinduced electron transfer. When modeled with a simple Langmuir isotherm, the equilibrium constant for QD-V(2+) adsorption, K(a), increases from 6.7 × 10(5) to 8.6 × 10(6) M(-1) upon decreasing the absolute concentration of the QDs from 1.4 × 10(-6) to 5.1 × 10(-8) M. The apparent increase in K(a) upon dilution results from an increase in the mean number of available adsorption sites per QD from 1.1 (for [QD] = 1.4 × 10(-6) M) to 37 (for [QD] = 5.1 × 10(-8) M) through desorption of native ligands from the surfaces of the QDs and through disaggregation of soluble QD clusters. A new model based on the Langmuir isotherm that treats both the number of adsorbed ligands per QD and the number of available binding sites per QD as binomially distributed quantities is described. This model yields a concentration-independent value for K(a) of 8.7 × 10(5) M(-1) for the QD-V(2+) system and provides a convenient means for quantitative analysis of QD-ligand adsorption in the presence of competing surface processes.
MADNESS (multiresolution adaptive numerical environment for scientific simulation) is a high-level software environment for solving integral and differential equations in many dimensions that uses adaptive and fast harmonic analysis methods with guaranteed precision based on multiresolution analysis and separated representations. Underpinning the numerical capabilities is a powerful petascale parallel programming environment that aims to increase both programmer productivity and code scalability. This paper describes the features and capabilities of MADNESS and briefly discusses some current applications in chemistry and several areas of physics.
We present a computational investigation into the line shapes of peaks in conductance histograms, finding that they possess high information content. In particular, the histogram peak associated with conduction through a single molecule elucidates the electron transport mechanism and is generally well-described by beta distributions. A statistical analysis of the peak corresponding to conduction through two molecules reveals the presence of cooperative effects between the molecules and also provides insight into the underlying conduction channels. This work describes tools for extracting additional interpretations from experimental statistical data, helping us better understand electron transport processes.
Cooperative effects between molecular wires affect conduction through the wires, and studies have yet to clarify the conditions under which these effects enhance (diminish) conduction. Using a simple but general model, we attribute this crosstalk to the duality of energetic splitting and phase interference between the wires’ conduction channels. In most cases, crosstalk increases (decreases) conductance when the Fermi level is far from (close to) an isolated wire’s resonance. Finally, we discuss strategies for controlling crosstalk between parallel molecular wires.
An ultrafast, nanoscale molecular switch is proposed, based on extension of the concept of nonadiabatic alignment to surface-adsorbed molecules. The switch consists of a conjugated organic molecule adsorbed onto a semiconducting surface and placed near a scanning tunneling microscope tip. A low-frequency, polarized laser field is used to switch the system by orienting the molecule with the field polarization axis, enabling conductance through the junction. Enhancement and spatial localization of the incident field by the metallic tip allow operation at low intensities. The principles of nonadiabatic alignment lead to switch on and off time scales far below rotational time scales.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.