Escalation of voluntary alcohol consumption is a hallmark of alcoholism, but its neural substrates remain unknown. In rats, escalation occurs following prolonged exposure to cycles of alcohol intoxication, and is associated with persistent, wide-ranging changes in gene expression within the medial prefrontal cortex (mPFC). Here, we examined whether induction of microRNA (
Long-term changes in brain gene expression have been identified in alcohol dependence, but underlying mechanisms remain unknown. Here, we examined the potential role of microRNAs for persistent gene expression changes in the rat medial prefrontal cortex after a history of alcohol dependence. Two-bottle free-choice alcohol consumption increased following 7-week exposure to intermittent alcohol intoxication. A bioinformatic approach using microarray analysis, qPCR, bioinformatic analysis, and microRNA-mRNA integrative analysis identified expression patterns indicative of a disruption in synaptic processes and neuroplasticity. 41 rat-microRNAs and 165 mRNAs in the medial prefrontal cortex were significantly altered after chronic alcohol exposure. A subset of the microRNAs and mRNAs was confirmed by qPCR. Gene ontology categories of differential expression pointed to functional processes commonly associated with neurotransmission, neuroadaptation, and synaptic plasticity. microRNA-mRNA expression pairing identified 33 microRNAs putatively targeting 89 mRNAs suggesting transcriptional networks involved in axonal guidance and neurotransmitter signaling. Our results demonstrate a significant shift in microRNA expression patterns in the medial prefrontal cortex following a history of dependence. Due to their global regulation of multiple downstream target transcripts, microRNAs may play a pivotal role in the reorganization of synaptic connections and long term neuroadaptations in alcohol dependence. microRNA-mediated alterations of transcriptional networks may be involved in disrupted prefrontal control over alcohol-drinking observed in alcoholic patients.
Background
Genetic deletion or antagonism of the neurokinin 1 receptor (NK1R) decreases alcohol intake, alcohol reward, and stress-induced alcohol relapse in rodents, while TACR1 variation is associated with alcoholism in humans.
Methods
We used L822429, a specific antagonist with high affinity for the rat NK1R, and examined whether sensitivity to NK1R blockade is altered in alcohol-preferring (P) rats. Operant alcohol self-administration and progressive ratio responding were analyzed in P-rats and their founder Wistar line. We also analyzed Tacr1 expression and binding and sequenced the Tacr1 promoter from both lines.
Results
Systemic L822429 decreased alcohol self-administration in P-rats but did not affect the lower rates of alcohol self-administration in Wistar rats. Tacr1 expression was elevated in the prefrontal cortex and the amygdala of P-rats. In central amygdala, elevated Tacr1 expression was accompanied by elevated NK1R binding. Central amygdala (but not prefrontal cortex) infusion of L822429 replicated the systemic antagonist effects on alcohol self-administration in P-rats. All P-rats, but only 18% of their founder Wistar population, were CC homozygous for a −1372G/C single nucleotide polymorphism. In silico analysis indicated that the Tacr1 −1372 genotype could modulate binding of the transcription factors GATA-2 and E2F-1. Electromobility shift and luciferase reporter assays suggested that the −1372C allele confers increased transcription factor binding and transcription.
Conclusions
Genetic variation at the Tacr1 locus may contribute to elevated rates of alcohol self-administration, while at the same time increasing sensitivity to NK1R antagonist treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.