It is generally presumed that the vast majority of carriers created by chemical doping of semiconducting polymer films are coulombically trapped by the counteranion, with only a small fraction that are free and responsible for the increased conductivity essential for organic electronic applications.
Molecular dopants are often added to semiconducting polymers to improve electrical conductivity. However, the use of such dopants does not always produce mobile charge carriers. In this work, ultrafast spectroscopy is used to explore the nature of the carriers created following doping of conjugated push–pull polymers with both F4TCNQ (2,3,5,6‐tetrafluoro‐7,7,8,8‐tetracyanoquinodimethane) and FeCl3. It is shown that for one particular push–pull material, the charge carriers created by doping are entirely non‐conductive bipolarons and not single polarons, and that transient absorption spectroscopy following excitation in the infrared can readily distinguish the two types of charge carriers. Based on density functional theory calculations and experiments on multiple push–pull conjugated polymers, it is argued that the size of the donor push units determines the relative stabilities of polarons and bipolarons, with larger donor units stabilizing the bipolarons by providing more area for two charges to co‐reside.
The relative static stability of square and triangular dectron lattices (two-dimensional %'igner crystals), the instability against vibrational excitations, and the effect of image-potential-induced screening on the dispersion of the frequency spectra are studied in the inversion layer of a metal-insulator-semiconductor structure. In harmonic approximation the two-dimensional Wigner crystal turns out to be stable against transverse vibrations for a triangular lattice but unstable for a square lattice in the I10] direction in disagreement with previous calculations. In triangular lattices, the transition of the anomalous dispersion (coL~k '") of the two-dimensional longitudinal mode at intermediate wave vectors (D ' & k & a ') to the normal dispersion (el~k) in the extremely-long-wavelength limit (kD & 1) due to screening effects is studied as a function of the ratio of insulator thickness D and lattice constant a.
Laser-induced optoacoustic spectroscopy (LIOAS), diffuse reflectance laser flash photolysis (DRLFP), and laser-induced luminescence (LIL) have been applied in conjunction to the determination of triplet state quantum yields of Rose Bengal (RB) supported on microcrystalline cellulose, a strongly light-scattering solid. Among the three used methods, the only one capable of providing absolute triplet quantum yields is LIOAS, but DRLFP and LIL aid in demonstrating that the LIOAS signal arises in fact from the triplet state and confirm the trend found with RB concentration. The coherence found for the three techniques demonstrates the usefulness of the approach. Observed triplet quantum yields are nearly constant within a limited concentration range, after which they decay strongly due to the generation of inactive dye aggregates or energy trapping centers. When quantum yields are divided by the fraction of absorbed light exciting the dye, the quotient falls off steadily with concentration, following the same trend as the observed fluorescence quantum yield. The conditions that maximize triplet formation are determined as a compromise between the rising light absorption and the decrease of quantum yield with RB concentration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.