It is straightforward to create fully ionized plasmas with modest rf power in a helicon. It is difficult, however, to create plasmas with density >10 20 m À3 , because neutral depletion leads to a lack of fuel. In order to address this density limit, we present fast (1 MHz), time-resolved measurements of the neutral density at and downstream from the rf antenna in krypton helicon plasmas. At the start of the discharge, the neutral density underneath the antenna is reduced to 1% of its initial value in 15 ls. The ionization rate inferred from these data implies that the electron temperature near the antenna is much higher than the electron temperature measured downstream. Neutral density measurements made downstream from the antenna show much slower depletion, requiring 14 ms to decrease by a factor of 1/e. Furthermore, the downstream depletion appears to be due to neutral pumping rather than ionization. V C 2013 AIP Publishing LLC. [http://dx.
Observations in steady-state plasmas confirm predictions that formation of a current-free double layer in a plasma expanding into a chamber of larger diameter is accompanied by an increase in ionization upstream of the double layer. The upstream plasma density increases sharply at the same driving frequency at which a double layer appears. For driving frequencies at which no double layer appears, large electrostatic instabilities are observed. Time-resolved measurements in pulsed discharges indicate that the double layer initially forms for all driving frequencies. However, for particularly strong double layers, instabilities appear early in the discharge and the double layer collapses.
Single exposure three-dimensional imaging of dusty plasma clusters Rev. Sci. Instrum. 84, 023501 (2013) Hydrogen transport diagnostics by atomic and molecular emission line profiles simultaneously measured for large helical device Phys. Plasmas 20, 012514 (2013) Time-and-space resolved comparison of plasma expansion velocities in high-power diodes with velvet cathodes J. Appl. Phys. 113, 043307 (2013) Development of a diffuse air-argon plasma source using a dielectric-barrier discharge at atmospheric pressure Appl. Phys. Lett. 102, 033503 (2013) Nonmonotonic radial distribution of excited atoms in a positive column of pulsed direct currect discharges in helium Appl. Phys. Lett. 102, 034104 (2013) Additional information on Phys. Plasmas Helicons are efficient plasma sources, capable of producing plasma densities of 10 19 m À3 with only 100 s W of input rf power. There are often steep density gradients in both the neutral density and plasma density, resulting in a fully ionized core a few cm wide surrounded by a weakly ionized plasma. The ionization profile is usually not well known because the neutral density is typically inferred from indirect spectroscopic measurements or from edge pressure gauge measurements. We have developed a two photon absorption laser induced fluorescence (TALIF) diagnostic capable of directly measuring the neutral density profile. We use TALIF in conjunction with a Langmuir probe to measure the ionization fraction profile as a function of driving frequency, magnetic field, and input power. It is found that when the frequency of the driving wave is greater than a critical frequency, f c % 3 f lh , where f lh is the lower hybrid frequency at the antenna, the ionization fraction is small (0.1%) and the plasma density low (10 17 m À3 ). As the axial magnetic field is increased, or, equivalently, the driving frequency decreased, a transition is observed. The plasma density increases by a factor of 10 or more, the plasma density profile becomes strongly peaked, the neutral density profile becomes strongly hollow, and the ionization fraction in the core approaches 100%. Neutral depletion in the core can be caused by a number of mechanisms. We find that in these experiments the depletion is due primarily to plasma pressure and neutral pumping. V C 2012 American Institute of Physics. [http://dx.
We have developed a new diagnostic based on two-photon absorption laser induced fluorescence (TALIF). We use a high intensity (5 MW/cm2), narrow bandwidth (0.1 cm−1) laser to probe the ground state of neutral hydrogen, deuterium and krypton with spatial resolution better than 0.2 cm, a time resolution of 10 ns, and a measurement cadence of 20 Hz. Here, we describe proof-of-principle measurements in a helicon plasma source that demonstrate the TALIF diagnostic is capable of measuring neutral densities spanning four orders of magnitude; comparable to the edge neutral gradients predicted in the DIII-D tokamak pedestal. The measurements are performed in hydrogen and deuterium plasmas and absolute calibration is accomplished through TALIF measurements in neutral krypton. The optical configuration employed is confocal, i.e., both light injection and collection are accomplished with a single lens through a single optical port in the vacuum vessel. The wavelength resolution of the diagnostic is sufficient to separate hydrogen and deuterium spectra and we present measurements from mixed hydrogen and deuterium plasmas that demonstrate isotopic abundance measurements are feasible. Time resolved measurements also allow us to explore the evolution of the neutral hydrogen density and temperature and effects of wall recycling. We find that the atomic neutral density grows rapidly at the initiation of the discharge, reaching the steady-state value within 1 ms. Additionally, we find that neutral hydrogen atoms are born with 0.08 eV temperatures, not 2 eV as is typically assumed.
The quality of plasma produced in a magnetic confinement fusion device is influenced to a large extent by the neutral gas surrounding the plasma. The plasma is fueled by the ionization of neutrals, and charge exchange interactions between edge neutrals and plasma ions are a sink of energy and momentum. Here we describe a diagnostic capable of measuring the spatial distribution of neutral gas in a magnetically confined fusion plasma. A high intensity (5 MW/cm(2)), narrow bandwidth (0.1 cm(-1)) laser is injected into a hydrogen plasma to excite the Lyman β transition via the simultaneous absorption of two 205 nm photons. The absorption rate, determined by measurement of subsequent Balmer α emission, is proportional to the number of particles with a given velocity. Calibration is performed in situ by filling the chamber to a known pressure of neutral krypton and exciting a transition close in wavelength to that used in hydrogen. We present details of the calibration procedure, including a technique for identifying saturation broadening, measurements of the neutral density profile in a hydrogen helicon plasma, and discuss the application of the diagnostic to plasmas in the DIII-D tokamak.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.