[1] Satellite-based precipitation estimates have great potential for a wide range of critical applications, but their error characteristics need to be examined and understood. In this study, six (6) high-resolution, satellite-based precipitation data sets are evaluated over the contiguous United States against a gauge-based product. An error decomposition scheme is devised to separate the errors into three independent components, hit bias, missed precipitation, and false precipitation, to better track the error sources associated with the satellite retrieval processes. Our analysis reveals the following. (1) The three components for each product are all substantial, with large spatial and temporal variations.(2) The amplitude of individual components sometimes is larger than that of the total errors. In such cases, the smaller total errors are resulting from the three components canceling one another. (3) All the products detected strong precipitation (>40 mm/d) well, but with various biases. They tend to overestimate in summer and underestimate in winter, by as much as 50% in either season, and they all miss a significant amount of light precipitation (<10 mm/d), up to 40%. (4) Hit bias and missed precipitation are the two leading error sources. In summer, positive hit bias, up to 50%, dominates the total errors for most products. (5) In winter, missed precipitation over mountainous regions and the northeast, presumably snowfall, poses a common challenge to all the data sets. On the basis of the findings, we recommend that future efforts focus on reducing hit bias, adding snowfall retrievals, and improving methods for combining gauge and satellite data. Strategies for future studies to establish better links between the errors in the end products and the upstream data sources are also proposed.
In this study, the recent work of Gottschalck et al. and Ebert et al. is extended by assessing the suitability of two Tropical Rainfall Measuring Mission (TRMM)-based precipitation products for hydrological land data assimilation applications. The two products are NASA's gauge-corrected TRMM 3B42 Version 6 (3B42), and the satellite-only NOAA Climate Prediction Center (CPC) morphing technique (CMORPH). The two products were evaluated against ground-based rain gauge-only and gauge-corrected Doppler radar measurements. The analyses were performed at multiple time scales, ranging from annual to diurnal, for the period March 2003 through February 2006. The analyses show that at annual or seasonal time scales, TRMM 3B42 has much lower biases and RMS errors than CMORPH. CMORPH shows season-dependent biases, with overestimation in summer and underestimation in winter. This leads to 50% higher RMS errors in CMORPH's area-averaged daily precipitation than TRMM 3B42. At shorter time scales (5 days or less), CMORPH has slightly less uncertainty, and about 10%-20% higher probability of detection of rain events than TRMM 3B42. In addition, the satellite estimates detect more high-intensity events, causing a remarkable shift in precipitation spectrum. Summertime diurnal cycles in the United States are well captured by both products, although the 8-km CMORPH seems to capture more diurnal features than the 0.25°C MORPH or 3B42 products. CMORPH tends to overestimate the amplitude of the diurnal cycles, particularly in the central United States. Possible causes for the discrepancies between these products are discussed.
Near-surface soil moisture is a critical component of land surface energy and water balance studies encompassing a wide range of disciplines. However, the processes of infiltration, runoff, and evapotranspiration in the vadose zone of the soil are not easy to quantify or predict because of the difficulty in accurately representing soil texture and hydraulic properties in land surface models. This study approaches the problem of parameterizing soils from a unique perspective based on components originally developed for operational estimation of soil moisture for mobility assessments. Estimates of near-surface soil moisture derived fiom passive (L-band) microwave remote sensing were acquired on six dates during the Monsoon '90 experiment in southeastern Arizona, and used to calibrate hydraulic properties in an offline land surface model and infer information on the soil conditions of the region. Specifically, a robust parameter estimation tool (PEST) was used to calibrate the Noah land surface model and run at very high spatial resolution across the Walnut Gulch Experimental Watershed. Errors in simulated versus observed soil moisture were minimized by adjusting the soil texture, which in turn controls the hydraulic properties through the use of pedotransfer functions. By estimating a continuous range of widely applicable soil properties such as sand, silt, and clay percentages rather than applying rigid soil texture classes, lookup tables, or large parameter sets as in previous studies, the physical accuracy and consistency of the resulting soils could then be assessed.In addition, the sensitivity of this calibration method to the number and timing of microwave retrievals is determined in relation to the temporal patterns in precipitation and soil drying. The resultant soil properties were applied to an extended time period demonstrating the improvement in simulated soil moisture over that using default or county-level soil parameters. The methodology is also applied to an independent case at Walnut Gulch using a new soil moisture product fiom active (C-band) radar imagery with much lower spatial and temporal resolution. Overall, results demonstrate the potential to gain physically meaningful soils information using simple parameter estimation with few but appropriately timed remote sensing retrievals. This study exarnines the ability of microwave remote sensing estimates of soil moisture to be used to calibrate a land surface model and, in the process, infer soil textural and hydraulic properties across spatially heterogeneous landscapes. Results also demonstrate the limitations and potential improvements in simulating soil moisture evolution using a combination of remote sensing, modeling, and parameter estimation techniques. Watershed. E r r m in simulated versus observed soil moistwe were m&mized by adjustbg the soil texae, which k ttt.m eontrols the hytlraa1-iit:propefiies though k use of pedob-msfer h e k s . By estimating a continms range of widely applicable soil prope~es swh sts sad, silt, and cl...
[1] Inaccuracy in spatially distributed precipitation fields can contribute significantly to the uncertainty of hydrological states and fluxes estimated from land surface models. This paper examines the results of selected interpolation methods for both convective and mixed/stratiform events that occurred during the North American monsoon season over a dense gauge network at the U.S. Department of Agriculture Agricultural Research Service Walnut Gulch Experimental Watershed in the southwestern United States. The spatial coefficient of variation for the precipitation field is employed as an indicator of event morphology, and a gauge clustering factor CF is formulated as a new, scale-independent measure of network organization. We consider that CF < 0 (a more distributed gauge network) will produce interpolation errors by reduced resolution of the precipitation field and that CF > 0 (clustering in the gauge network) will produce errors because of reduced areal representation of the precipitation field. Spatial interpolation is performed using both inverse-distance-weighted (IDW) and multiquadric-biharmonic (MQB) methods. We employ ensembles of randomly selected network subsets for the statistical evaluation of interpolation errors in comparison with the observed precipitation. The magnitude of interpolation errors and differences in accuracy between interpolation methods depend on both the density and the geometrical organization of the gauge network. Generally, MQB methods outperform IDW methods in terms of interpolation accuracy under all conditions, but it is found that the order of the IDW method is important to the results and may, under some conditions, be just as accurate as the MQB method. In almost all results it is demonstrated that the inverse-distance-squared method for spatial interpolation, commonly employed in operational analyses and for engineering assessments, is inferior to the ID-cubed method, which is also more computationally efficient than the MQB method in studies of large networks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.