Compared to bacteria, the role of fungi within the intestinal microbiota is poorly understood. In this study we investigated whether the presence of a “healthy” fungal community in the gut is important for modulating immune function. Prolonged oral treatment of mice with antifungal drugs resulted in increased disease severity in acute and chronic models of colitis, and also exacerbated the development of allergic airway disease. Microbiota profiling revealed restructuring of fungal and bacterial communities. Specifically, representation of Candida spp. was reduced, while Aspergillus, Wallemia, and Epicoccum spp. were increased. Oral supplementation with a mixture of three fungi found to expand during antifungal treatment (Aspergillus amstelodami, Epicoccum nigrum, and Wallemia sebi) was sufficient to recapitulate the exacerbating effects of antifungal drugs on allergic airway disease. Taken together these results indicate that disruption of commensal fungal populations can influence local and peripheral immune responses and enhance relevant disease states.
Highlights d M. restricta is associated with the colonic mucosa in Crohn's disease (CD) patients d M. restricta exacerbates colitis in wild-type and gnotobiotic mice d M. restricta is found in CD patients with a disease-linked polymorphism in CARD9 d Malassezia-exacerbated colitis in mice requires signaling via CARD9
The gastrointestinal microbiota influences immune function throughout the body. The gut-lung axis refers to the concept that alterations of gut commensal microorganisms can have a distant effect on immune function in the lung. Overgrowth of intestinal Candida albicans has been previously observed to exacerbate allergic airways disease in mice, but whether subtler changes in intestinal fungal microbiota can affect allergic airways disease is less clear. In this study we have investigated the effects of the population expansion of commensal fungus Wallemia mellicola without overgrowth of the total fungal community. Wallemia spp. are commonly found as a minor component of the commensal gastrointestinal mycobiota in both humans and mice. Mice with an unaltered gut microbiota community resist population expansion when gavaged with W. mellicola; however, transient antibiotic depletion of gut microbiota creates a window of opportunity for expansion of W. mellicola following delivery of live spores to the gastrointestinal tract. This phenomenon is not universal as other commensal fungi (Aspergillus amstelodami, Epicoccum nigrum) do not expand when delivered to mice with antibiotic-depleted microbiota. Mice with Wallemia-expanded gut mycobiota experienced altered pulmonary immune responses to inhaled aeroallergens. Specifically, after induction of allergic airways disease with intratracheal house dust mite (HDM) antigen, mice demonstrated enhanced eosinophilic airway infiltration, airway hyperresponsiveness (AHR) to methacholine challenge, goblet cell hyperplasia, elevated bronchoalveolar lavage IL-5, and enhanced serum HDM IgG1. This phenomenon occurred with no detectable Wallemia in the lung. Targeted amplicon sequencing analysis of the gastrointestinal mycobiota revealed that expansion of W. mellicola in the gut was associated with additional alterations of bacterial and fungal commensal communities. We therefore colonized fungus-free Altered Schaedler Flora (ASF) mice with W. mellicola. ASF mice colonized with W. mellicola experienced enhanced severity of allergic airways disease compared to fungus-free control ASF mice without changes in bacterial community composition.
Gargus M, Niu C, Vallone JG, Binkley J, Rubin DC, Shaker A. Human esophageal myofibroblasts secrete proinflammatory cytokines in response to acid and Toll-like receptor 4 ligands. Am J Physiol Gastrointest Liver Physiol 308: G904 -G923, 2015. First published April 16, 2015 doi:10.1152/ajpgi.00333.2014.-The pathophysiology of esophageal injury, repair, and inflammation in gastroesophageal reflux-disease (GERD) is complex. Whereas most studies have focused on the epithelial response to GERD injury, we are interested in the stromal response. We hypothesized that subepithelial esophageal myofibroblasts in GERD secrete proinflammatory cytokines in response to injurious agents encountered via epithelial barrier breaches or through dilated epithelial intercellular spaces. We determined the percentage of myofibroblasts [␣-smooth muscle actin (␣-SMA)ϩvimentinϩCD31Ϫ] in the subepithelial GERD and normal esophageal stroma by immunomorphologic analysis. We performed ␣-SMA coimmunostaining with IL-6 and p65. We established and characterized primary cultures of ␣-SMAϩvimentinϩCD31ϪCD45Ϫ human esophageal myofibroblasts (HuEso MFs). We modeled GERD by treatment with pH 4.5-acidified media and Toll-like receptor 4 (TLR4) ligands, LPS and high-mobility group box 1 protein (HMGB1), and determined myofibroblast cytokine secretion in response to GERD injury. We demonstrate that spindle-shaped cell myofibroblasts are located near the basement membrane of stratified squamous epithelium in normal esophagus. We identify an increase in subepithelial myofibroblasts and activation of proinflammatory pathways in patients with GERD. Primary cultures of stromal cells obtained from normal esophagus retain myofibroblast morphology and express the acid receptor transient receptor potential channel vanilloid subfamily 1 (TRPV1) and TLR4. HuEso MFs stimulated with acid and TLR4 agonists LPS and HMGB1 increase IL-6 and IL-8 secretion via TRPV1 and NF-B activation. Our work implicates a role for human subepithelial stromal cells in the pathogenesis of GERD-related esophageal injury. Findings of this study can be extended to the investigation of epithelial-stromal interactions in inflammatory esophageal mucosal disorders.gastroesophageal-reflux disease; acid-related disease; mucosal injury; inflammatory cells; inflammatory mechanisms DESPITE THE PROFOUND MORBIDITY and mortality associated with esophageal disorders, the basic mechanisms underlying esophageal injury and repair have not been fully elucidated. Gastroesophageal-reflux disease (GERD) is one of the most common problems encountered in clinical practice and is a recognized cause of esophageal injury, ranging from nonerosive to erosive esophagitis, strictures, intestinal metaplasia (35), and malignancy (1, 16). The pathophysiology of GERD-mediated injury is complex and incompletely understood. The stratified
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.