Pseudomonas aeruginosa (P. aeruginosa) possesses a plethora of virulence determinants, including the production of biofilm, pigments, exotoxins, proteases, flagella, and secretion systems. The aim of our present study was to establish the relationship between biofilm-forming capacity, the expression of some important virulence factors, and the multidrug-resistant (MDR) phenotype in P. aeruginosa. A total of three hundred and two (n = 302) isolates were included in this study. Antimicrobial susceptibility testing and phenotypic detection of resistance determinants were carried out; based on these results, isolates were grouped into distinct resistotypes and multiple antibiotic resistance (MAR) indices were calculated. The capacity of isolates to produce biofilm was assessed using a crystal violet microtiter-plate based method. Motility (swimming, swarming, and twitching) and pigment-production (pyoverdine and pyocyanin) were also measured. Pearson correlation coefficients (r) were calculated to determine for antimicrobial resistance, biofilm-formation, and expression of other virulence factors. Resistance rates were the highest for ceftazidime (56.95%; n = 172), levofloxacin (54.97%; n = 166), and ciprofloxacin (54.64%; n = 159), while lowest for colistin (1.66%; n = 5); 44.04% (n = 133) of isolates were classified as MDR. 19.87% (n = 60), 20.86% (n = 63) and 59.27% (n = 179) were classified as weak, moderate, and strong biofilm producers, respectively. With the exception of pyocyanin production (0.371 ± 0.193 vs. non-MDR: 0.319 ± 0.191; p = 0.018), MDR and non-MDR isolates did not show significant differences in expression of virulence factors. Additionally, no relevant correlations were seen between the rate of biofilm formation, pigment production, or motility. Data on interplay between the presence and mechanisms of drug resistance with those of biofilm formation and virulence is crucial to address chronic bacterial infections and to provide strategies for their management.
Drug resistance in antifungal therapy, a problem unknown until a few years ago, is increasingly assuming importance especially in immunosuppressed patients and patients receiving chemotherapy and radiotherapy. In the past years, the use of essential oils as an approach to improve the effectiveness of antifungal agents and to reduce antifungal resistance levels has been proposed. Our research aimed to evaluate the antifungal activity of Colombian rue, Ruta graveolens, essential oil (REO) against clinical strains of Candida albicans, Candida parapsilopsis, Candida glabrata, and Candida tropicalis. Data obtained showed that C. tropicalis and C. albicans were the most sensitive strains showing minimum inhibitory concentrations (MIC) of 4.1 and 8.2 µg/mL of REO. Time–kill kinetics assay demonstrated that REO showed a fungicidal effect against C. tropicalis and a fungistatic effect against C. albicans. In addition, an amount of 40% of the biofilm formed by C. albicans was eradicated using 8.2 µg/mL of REO after 1 h of exposure. The synergistic effect of REO together with some antifungal compounds was also investigated. Fractional inhibitory concentration index (FICI) showed synergic effects of REO combined with amphotericin B. REO Lead a disruption in the cellular membrane integrity, consequently resulting in increased intracellular leakage of the macromolecules, thus confirming that the plasma membrane is a target of the mode of action of REO against C. albicans and C. tropicalis.
IntroductionAntibiotics that suppress Propionibacterium acnes are the standard treatment for acne but are becoming less effective, due to the appearance of antibiotic-resistant strains. Many plants are known to have innate antimicrobial action and can be used as alternatives to antibiotics; thus, it is necessary to prove their effectiveness in vivo. This study aimed to evaluate the anti-acne efficacy of a new cream based on three natural extracts, comparing it to erythromycin cream and placebo.Patients and methodsSixty patients with mild to moderate acne vulgaris were randomly divided into three groups: treated with cream containing 20% propolis, 3% “tea tree oil”, and 10% “Aloe vera” (PTAC) (n=20); or with 3 % erythromycin cream (ERC) (n=20); or with placebo (n=20). At baseline, after 15 and 30 days, investigators evaluated response to treatment by counting acne lesions through noninvasive measurements and macrophotography.ResultsAll the clinical and instrumental values studied were statistically different from placebo except for sebometry, pHmetry, and erythema index values, measured on healthy skin. Unlike in the placebo group, papular and scar lesions showed high erythema reduction after 15 and 30 days of PTAC and ERC application.ConclusionThe PTAC formulation was better than ERC in reducing erythema scars, acne severity index, and total lesion count.
Purpose To assess the in vitro antimicrobial activity of a new commercial ophthalmic solution containing povidone‐iodine 0.6% (IODIM®). Methods Staphylococcus aureus ATCC 43300, Pseudomonas aeruginosa ATCC 27853, three ocular bacterial isolates (1 S. epidermidis, 1 S. aureus, 1 P. aeruginosa) and five Candida species were used. The bacterial and fungal isolates were cultured on Columbia blood agar base plates and Sabouraud‐dextrose agar plates, respectively and incubated overnight at 37°C. Bacterial and fungal suspensions in sterile saline solution were prepared to an optical density equal to 0.5 McFarland standard (approximately 108 CFU/ml). Suspensions of the isolates were made in IODIM® solution to obtain a final concentration of 106 CFU/ml. The suspensions were then distributed in conical tubes in a final volume of 1 ml and incubated at 37°C. At different time‐points (1, 5, 10, 15, 20, 25, 30 min and 24 hr), 10 μl of each suspension was removed, seeded on Columbia blood agar base and Sabouraud‐dextrose agar plates and then incubated for 24 hr at 37°C. Positive and negative controls were included in all experiments. Results After 5‐min incubation, there was no bacterial growth on any plate. Conversely, IODIM® failed to kill the Candida isolates after 30 min’ exposure and needed 24 hr to eradicate the organisms. Conclusion IODIM® ophthalmic solution showed in vitro antimicrobial activity against S. epidermidis, S. aureus, P. aeruginosa and Candida species. Results suggest that it may be a potential candidate for the treatment of ocular surface infections and antimicrobial prophylaxis before intravitreal injections.
The rapid emergence of drug-resistant strains and novel viruses have motivated the search for new anti-infectious agents. In this study, the chemical compositions and cytotoxicity, as well as the antibacterial, antifungal, antitrichomonas, and antiviral activities of essential oils from the leaves, rhizomes, and whole plant of Hornstedtia bella were investigated. The GC/MS analysis showed that β-pinene, E-β-caryophyllene, and α-humulene were found at high concentrations in the essential oils. The essential oils exhibited (i) inhibition against Staphylococcus aureus, methicillin-resistant Staphylococcus aureus, Staphylococcus epidermidis with minimum inhibitory concentrations (MIC) and minimum lethal concentration (MLC) values from 1 to 4% (v/v); (ii) MIC and MLC values from 2 to 16% (v/v) in Candida tropicalis and Candida parapsilosis; (iii) MIC and MLC values from 4 to 16% in Enterococcus faecalis; and (iv) MIC and MLC values from 8 to greater than or equal to 16% (v/v) in the remaining strains, including Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumoniae, Candida albicans, and Candida glabrata. In antitrichomonas activity, the leaves and whole-plant oils of Hornstedtia bella possessed IC50, IC90, and MLC values of 0.008%, 0.016%, and 0.03% (v/v), respectively, whilst those of rhizomes oil had in turn, 0.004%, 0.008%, and 0.016% (v/v).Besides, the leaf oil showed a weak cytotoxicity against Vero 76 and MRC-5; meanwhile, rhizomes and whole-plant oils did not exert any toxic effects on cell monolayers. Finally, these oils were not active against EV-A71.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.