Investigating the binding kinetics of small molecule analytes to larger ligands, such as proteins and antibodies, is a compelling task for the field of drug and biomarker development, as well as the food industry and agro-biotechnology. Here, we improve the limit of detection of the Interferometric Reflectance Imaging Sensor (IRIS), a label-free, highly multiplexed biosensor, to perform real-time affinity measurement of small molecules binding to immobilized antibodies in a microarray format. As the analytes bind to the surface probes, the biomass accumulation on the surface is quantified by measuring the optical reflectance from the layered Si/SiO2 chip through the solution, in a common-path interferometer configuration. As a proof of concept, label-free detection of biotin molecules binding to immobilized streptavidin probes is performed, achieving 1 pg/mm2 sensitivity through signal averaging in a shot noise limited operation. Furthermore, we apply the optimized sensor to the screening of a 20-multiplexed antibody chip (MW~150 kDa ligands) against Fumonisin B1 (MW = 721.8 Da), one of the most prevalent mycotoxins found in many cereal grains such as corn and wheat. The simultaneously recorded binding curves of the toxin to the multiplexed sensor yield a signal-to-noise ratio of ≈8 when noise reduction methods of spatial and temporal averaging are utilized.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.