Purpose: Cone-beam (CB) CT is a powerful noninvasive imaging modality, and is widely used in many applications. Accurate geometric parameters are essential for high-quality image reconstruction. Usually, a CBCT system with higher spatial resolution, particularly on the order of microns or nanometers, will be more sensitive to the parametric accuracy. Here, we propose a novel calibration method combining a simple phantom containing ball bearing markers and an advanced optimization procedure. This method can be applied to CBCT with reproducible geometry and frame-to-frame invariant geometric parameters. Methods: Our proposed simplex-simulated annealing procedure minimizes the cost function that associates the geometrical parameters with the degree to which the back projections of the ball bearings in projections from various viewing angles converge, and the global minimum of the cost function corresponds to the actual geometric parameters. Specifically, six geometric parameters can be directly obtained by minimizing the cost function, and the last parameter, the distance from source to rotation axis (SRD), can be obtained using prior knowledge of the phantomthe spacing between the two ball bearings. Results: Numerical simulation was performed to validate that the proposed method with various noise levels. With the proposed method, the mean errors and standard deviations can be reduced to $ 10% and less than 1/3 of a competing benchmark method in the case of strong Gaussian noise (sigma = 200% of the pixel size) and large tilt angle (tilt angle = À4 ). The calibration experiments with micro-CT and high-resolution CT scanners demonstrate that the proposed method recovers imaging parameters accurately, leading to superior image quality. Conclusion: The proposed method can obtain accurate geometric parameters of a CBCT system with a circular trajectory. While in the case of micro-CT the proposed method has a performance comparable to the competing method, for high-resolution CT, which is more sensitive to geometric calibration, the proposed method demonstrates higher calibration accuracy and more robustness than the benchmark algorithm.
Optogenetics as developed by Dr. Karl Deisseroth and others has been a transformative technology in the area of neuroscience. By stimulating genetically-modified neurons with visible light, modulation of the ionic conduction across the cell membrane can be achieved with very high specificity and precise temporal control. Despite the major influence of this technique, its scope is limited by its invasive nature and its lack of stimulation depth.
Multimodality imaging systems such as positron emission tomography-computed tomography (PET-CT) and MRI-PET are widely available, but a simultaneous CT-MRI instrument has not been developed. Synergies between independent modalities, e.g., CT, MRI, and PET/SPECT can be realized with image registration, but such postprocessing suffers from registration errors that can be avoided with synchronized data acquisition. The clinical potential of simultaneous CT-MRI is significant, especially in cardiovascular and oncologic applications where studies of the vulnerable plaque, response to cancer therapy, and kinetic and dynamic mechanisms of targeted agents are limited by current imaging technologies. The rationale, feasibility, and realization of simultaneous CT-MRI are described in this perspective paper. The enabling technologies include interior tomography, unique gantry designs, open magnet and RF sequences, and source and detector adaptation. Based on the experience with PET-CT, PET-MRI, and MRI-LINAC instrumentation where hardware innovation and performance optimization were instrumental to construct commercial systems, the authors provide top-level concepts for simultaneous CT-MRI to meet clinical requirements and new challenges. Simultaneous CT-MRI fills a major gap of modality coupling and represents a key step toward the so-called "omnitomography" defined as the integration of all relevant imaging modalities for systems biology and precision medicine.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.