In preeclampsia (PE), cytotrophoblast (CTB) invasion of the uterus and spiral arteries is often shallow. Thus, the placenta’s role has been a focus. In this study, we tested the hypothesis that decidual defects are an important determinant of the placental phenotype. We isolated human endometrial stromal cells from nonpregnant donors with a previous pregnancy that was complicated by severe PE (sPE). Compared with control cells, they failed to decidualize in vitro as demonstrated by morphological criteria and the analysis of stage-specific antigens (i.e., IGFBP1, PRL). These results were bolstered by global transcriptional profiling data that showed they were transcriptionally inert. Additionally, we used laser microdissection to isolate the decidua from tissue sections of the maternal–fetal interface in sPE. Global transcriptional profiling revealed defects in gene expression. Also, decidual cells from patients with sPE, which dedifferentiated in vitro, failed to redecidualize in culture. Conditioned medium from these cells failed to support CTB invasion. To mimic aspects of the uterine environment in normal pregnancy, we added PRL and IGFBP1, which enhanced invasion. These data suggested that failed decidualization is an important contributor to down-regulated CTB invasion in sPE. Future studies will be aimed at determining whether this discovery has translational potential with regard to assessing a woman’s risk of developing this pregnancy complication.
Preeclampsia (PE), which affects 4-8% of human pregnancies, causes significant maternal and neonatal morbidity and mortality. Within the basal plate, placental cytotrophoblasts (CTBs) of fetal origin invade the uterus and extensively remodel the maternal vasculature. In PE, CTB invasion is often shallow, and vascular remodeling is rudimentary. To better understand possible causes, we conducted a global analysis of gene expression at the maternal-fetal interface in placental samples from women with PE (n = 12; 24-36 wk) vs. samples from women who delivered due to preterm labor with no evidence of infection (n = 11; 24-36 wk), a condition that our previous work showed is associated with normal CTB invasion. Using the HG-U133A&B Affymetrix GeneChip platform, and statistical significance set at log odds-ratio of B >0, 55 genes were differentially expressed in PE. They encoded proteins previously associated with PE [e.g. Flt-1 (vascular endothelial growth factor receptor-1), leptin, CRH, and inhibin] and novel molecules [e.g. sialic acid binding Ig-like lectin 6 (Siglec-6), a potential leptin receptor, and pappalysin-2 (PAPP-A2), a protease that cleaves IGF-binding proteins]. We used quantitative PCR to validate the expression patterns of a subset of the genes. At the protein level, we confirmed PE-related changes in the expression of Siglec-6 and PAPP-A2, which localized to invasive CTBs and syncytiotrophoblasts. Notably, Siglec-6 placental expression is uniquely human, as is spontaneous PE. The functional significance of these novel observations may provide new insights into the pathogenesis of PE, and assaying the circulating levels of these proteins could have clinical utility for predicting and/or diagnosing PE.
Human placentation entails the remarkable integration of fetal and maternal cells into a single functional unit. In the basal plate region (the maternal-fetal interface) of the placenta, fetal cytotrophoblasts from the placenta invade the uterus and remodel the resident vasculature and avoid maternal immune rejection. Knowing the molecular bases for these unique cell-cell interactions is important for understanding how this specialized region functions during normal pregnancy with implications for tumor biology and transplantation immunology. Therefore, we undertook a global analysis of the gene expression profiles at the maternal-fetal interface. Basal plate biopsy specimens were obtained from 36 placentas (14-40 wk) at the conclusion of normal pregnancies. RNA was isolated, processed, and hybridized to HG-U133A&B Affymetrix GeneChips. Surprisingly, there was little change in gene expression during the 14- to 24-wk interval. In contrast, 418 genes were differentially expressed at term (37-40 wk) as compared with midgestation (14-24 wk). Subsequent analyses using quantitative PCR and immunolocalization approaches validated a portion of these results. Many of the differentially expressed genes are known in other contexts to be involved in differentiation, motility, transcription, immunity, angiogenesis, extracellular matrix dissolution, or lipid metabolism. One sixth were nonannotated or encoded hypothetical proteins. Modeling based on structural homology revealed potential functions for 31 of these proteins. These data provide a reference set for understanding the molecular components of the dialogue taking place between maternal and fetal cells in the basal plate as well as for future comparisons of alterations in this region that occur in obstetric complications.
Placental trophoblasts are key determinants of in utero development. Mouse trophoblast stem cells (mTSCs), which were first derived over a decade ago, are a powerful cell culture model for studying their self-renewal or differentiation. Our attempts to isolate an equivalent population from the trophectoderm of human blastocysts generated colonies that quickly differentiated in vitro. This finding suggested that the human placenta has another progenitor niche. Here we show that the chorion is one such site. Initially, we immunolocalized pluripotency factors and trophoblast fate determinants in the early-gestation placenta, amnion and chorion. Immunoreactive cells were numerous in the chorion. We isolated these cells and plated them in medium containing FGF and an inhibitor of activin/nodal signaling, which is required for human embryonic SC self-renewal. Colonies of polarized cells with a limited lifespan emerged. Trypsin dissociation yielded continuously self-replicating monolayers. Colonies and monolayers formed the two major human trophoblast lineages—multinucleate syncytiotrophoblasts and invasive cytotrophoblasts (CTBs). Transcriptional profiling experiments revealed the factors associated with the self-renewal or differentiation of human chorionic trophoblast progenitor cells (TBPCs). They included imprinted genes, NR2F1/2, HMGA2 and adhesion molecules that were required for TBPC differentiation. Together, the results of these experiments suggested that the chorion is one source of epithelial CTB progenitors. These findings explain why CTBs of fully formed chorionic villi have a modest mitotic index and identify the chorionic mesoderm as a niche for TBPCs that support placental growth.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.