In this work, we generate a battery performance and thermal dataset specific to eVTOL use-cases and develop a fast and accurate performance and degradation model around that dataset. We use a machine-learning based physics-informed battery performance model to break the typically observed accuracy-computing cost trade-off. We fit the aging parameters for each cycle in a given cell's lifetime, and then model the evolution of those parameters using a new approach that combines traditional physics-based models, consisting of SEI film growth, charge loss, and Li Plating, along with a neural network in a universal ordinary differential equations (u-ODEs) framework.
In this work, we generate a battery performance and thermal dataset specific to eVTOL use-cases and develop a fast and accurate performance and degradation model around that dataset. We use a machine-learning based physics-informed battery performance model to break the typically observed accuracy-computing cost trade-off. We fit the aging parameters for each cycle in a given cell's lifetime, and then model the evolution of those parameters using a new approach that combines traditional physics-based models, consisting of SEI film growth, charge loss, and Li Plating, along with a neural network in a universal ordinary differential equations (u-ODEs) framework.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.