BackgroundSmaug is an RNA-binding protein that induces the degradation and represses the translation of mRNAs in the early Drosophila embryo. Smaug has two identified direct target mRNAs that it differentially regulates: nanos and Hsp83. Smaug represses the translation of nanos mRNA but has only a modest effect on its stability, whereas it destabilizes Hsp83 mRNA but has no detectable effect on Hsp83 translation. Smaug is required to destabilize more than one thousand mRNAs in the early embryo, but whether these transcripts represent direct targets of Smaug is unclear and the extent of Smaug-mediated translational repression is unknown.ResultsTo gain a panoramic view of Smaug function in the early embryo, we identified mRNAs that are bound to Smaug using RNA co-immunoprecipitation followed by hybridization to DNA microarrays. We also identified mRNAs that are translationally repressed by Smaug using polysome gradients and microarrays. Comparison of the bound mRNAs to those that are translationally repressed by Smaug and those that require Smaug for their degradation suggests that a large fraction of Smaug’s target mRNAs are both translationally repressed and degraded by Smaug. Smaug directly regulates components of the TRiC/CCT chaperonin, the proteasome regulatory particle and lipid droplets, as well as many metabolic enzymes, including several glycolytic enzymes.ConclusionsSmaug plays a direct and global role in regulating the translation and stability of a large fraction of the mRNAs in the early Drosophila embryo, and has unanticipated functions in control of protein folding and degradation, lipid droplet function and metabolism.
SUMMARY In animal embryos, the maternal-to-zygotic transition (MZT) hands developmental control from maternal to zygotic gene products. We show that the maternal proteome represents more than half of the protein-coding capacity of Drosophila melanogaster’s genome, and that 2% of this proteome is rapidly degraded during the MZT. Cleared proteins include the post-transcriptional repressors Cup, Trailer hitch (TRAL), Maternal expression at 31B (ME31B), and Smaug (SMG). Although the ubiquitin-proteasome system is necessary for clearance of these repressors, distinct E3 ligase complexes target them: the C-terminal to Lis1 Homology (CTLH) complex targets Cup, TRAL, and ME31B for degradation early in the MZT and the Skp/Cullin/F-box-containing (SCF) complex targets SMG at the end of the MZT. Deleting the C-terminal 233 amino acids of SMG abrogates F-box protein interaction and confers immunity to degradation. Persistent SMG downregulates zygotic re-expression of mRNAs whose maternal contribution is degraded by SMG. Thus, clearance of SMG permits an orderly MZT.
The vigilin family of proteins is evolutionarily conserved from yeast to humans and characterized by the proteins' 14 or 15 hnRNP K homology (KH) domains, typically associated with RNA-binding. Vigilin is the largest RNA-binding protein (RBP) in the KH domain-containing family and one of the largest RBP known to date. Since its identification 30 years ago, vigilin has been shown to bind over 700 mRNAs and has been associated with cancer progression and cardiovascular disease. We provide a brief historic overview of vigilin research and outline the proteins' different functions, focusing on maintenance of genome ploidy, heterochromatin formation, RNA export, as well as regulation of translation, mRNA transport, and mRNA stability. The multitude of associated functions is reflected by the large number of identified interaction partners, ranging from tRNAs, mRNAs, ribosomes and ribosome-associated proteins, to histone methyltransferases and DNA-dependent protein kinases. Most of these partners bind to vigilin's carboxyterminus, and the two most C-terminal KH domains of the protein, KH13 and KH14, represent the main mRNA-binding interface. Since the nuclear functions of vigilins in particular are not conserved, we outline a model for the basal functions of vigilins, as well as those which were acquired during the transition from unicellular organisms to metazoa. WIREs RNA 2017, 8:e1448. doi: 10.1002/wrna.1448 For further resources related to this article, please visit the WIREs website.
SUMMARYIn animal embryos the maternal-to-zygotic transition (MZT) hands developmental control from maternal to zygotic gene products. We show that the maternal proteome represents over half of the protein coding capacity of the Drosophila melanogaster genome and that 2% of this proteome is rapidly degraded during the MZT. Cleared proteins include the post-transcriptional repressors Cup, Trailer hitch (TRAL), Maternal expression at 31B (ME31B), and Smaug (SMG). While the ubiquitin-proteasome system is necessary for clearance of all four repressors, distinct E3 ligase complexes target them: the C-terminal to Lis1 Homology (CTLH) complex targets Cup, TRAL and ME31B for degradation early in the MZT; the Skp/Cullin/F-box-containing (SCF) complex targets SMG at the end of the MZT. Deleting the C-terminal 233 amino acids of SMG makes the protein immune to degradation. We show that artificially persistent SMG downregulates the zygotic re-expression of mRNAs whose maternal contribution is cleared by SMG. Thus, clearance of SMG permits an orderly MZT.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.