This research utilizes linear and nonlinear ultrasonic techniques to establish a linkage between microstructure and macroscale mechanical properties of additively manufactured (AM) stainless steel 316L samples. The specimens are manufactured using two methods: laser-powder bed fusion and traditional wrought manufacturing. Using the nonlinear ultrasonic method of second harmonic generation, the acoustic nonlinearity parameter is estimated in samples with different heat treatment levels intended to alter microstructural and mechanical properties. Linear ultrasonic parameters including wave speed and resonant frequency are additionally measured. Mechanical properties are obtained through tensile testing of coupons corresponding to the test samples. Microstructural information for the samples is obtained using electron backscatter diffraction to help elucidate the relationships between microstructure, mechanical properties, and ultrasonic response. Results indicate correlations between the nonlinearity parameter and both ultimate tensile strength and yield strength, where nonlinearity generally decreases as sample strength increases, particularly in the AM samples. We hypothesize that microstructural evolution of grain characteristics across different heat treatments influences trends in measured nonlinearity, as well as substructures at smaller scales such as dislocations. These results show promising evidence for the feasibility of AM parts qualification using nondestructive nonlinear ultrasonic testing.
In conjunction with NASA and the Department of Defense, the Johns Hopkins University Applied Physics Laboratory (JHU/APL) has been investigating analytical techniques to address many of the fundamental issues associated with solar exploration spacecraft and high-speed atmospheric vehicle systems. These issues include: thermo-structural response including the effects of thermal management via the use of surface optical properties for high-temperature composite structures; aerodynamics with the effects of non-equilibrium chemistry and gas radiation; and aero-thermodynamics with the effects of material ablation for a wide range of thermal protection system (TPS) materials. The need exists to integrate these discrete tools into a common framework that enables the investigation of interdisciplinary interactions (including analysis tool, applied load, and environment uncertainties) to provide high fidelity solutions.In addition to developing robust tools for the coupling of aerodynamically induced thermal and mechanical loads, JHU/APL has been studying the optimal design of high-speed vehicles as a function of their trajectory. Under traditional design methodology the optimization of system level mission parameters such as range and time of flight is performed independently of the optimization for thermal and mechanical constraints such as stress and temperature. A truly optimal trajectory should optimize over the entire range of mission and thermo-mechanical constraints.Under this research, a framework for the robust analysis of high-speed spacecraft and atmospheric vehicle systems has been developed. It has been built around a generic, loosely coupled framework such that a variety of readily available analysis tools can be used. The methodology immediately addresses many of the current analysis inadequacies and allows for future extension in order to handle more complex problems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.