Growth/differentiation factor 15 (GDF15), also known as MIC-1, is a distant member of the transforming growth factor-β (TGF-β) superfamily and has been implicated in various biological functions, including cancer cachexia, renal and heart failure, atherosclerosis and metabolism. A connection between GDF15 and body-weight regulation was initially suggested on the basis of an observation that increasing GDF15 levels in serum correlated with weight loss in individuals with advanced prostate cancer. In animal models, overexpression of GDF15 leads to a lean phenotype, hypophagia and other improvements in metabolic parameters, suggesting that recombinant GDF15 protein could potentially be used in the treatment of obesity and type 2 diabetes. However, the signaling and mechanism of action of GDF15 are poorly understood owing to the absence of a clearly identified cognate receptor. Here we report that GDNF-family receptor α-like (GFRAL), an orphan member of the GFR-α family, is a high-affinity receptor for GDF15. GFRAL binds to GDF15 in vitro and is required for the metabolic actions of GDF15 with respect to body weight and food intake in vivo in mice. Gfral mice were refractory to the effects of recombinant human GDF15 on body-weight, food-intake and glucose parameters. Blocking the interaction between GDF15 and GFRAL with a monoclonal antibody prevented the metabolic effects of GDF15 in rats. Gfral mRNA is highly expressed in the area postrema of mouse, rat and monkey, in accordance with previous reports implicating this region of the brain in the metabolic actions of GDF15 (refs. 4,5,6). Together, our data demonstrate that GFRAL is a receptor for GDF15 that mediates the metabolic effects of GDF15.
There has been growing recognition of the essential roles of citrate in biomechanical properties of mineralized tissues, including teeth and bone. However, the sources of citrate in these tissues have not been well defined, and the contribution of citrate to the regulation of odontogenesis and osteogenesis has not been examined. Here, tooth and bone phenotypes were examined in sodium-dependent citrate transporter (NaCT) Slc13a5 deficient C57BL/6 mice at 13 and 32 weeks of age. Slc13a5 deficiency led to defective tooth development, characterized by absence of mature enamel, formation of aberrant enamel matrix, and dysplasia and hyperplasia of the enamel organ epithelium that progressed with age. These abnormalities were associated with fragile teeth with a possible predisposition to tooth abscesses. The lack of mature enamel was consistent with amelogenesis imperfecta. Furthermore, Slc13a5 deficiency led to decreased bone mineral density and impaired bone formation in 13-week-old mice but not in older mice. The findings revealed the potentially important role of citrate and Slc13a5 in the development and function of teeth and bone.
The role of activin B, a transforming growth factor β (TGFβ) superfamily cytokine, in liver health and disease is largely unknown. We aimed to investigate whether activin B modulates liver fibrogenesis. Liver and serum activin B, along with its analog activin A, were analyzed in patients with liver fibrosis from different etiologies and in mouse acute and chronic liver injury models. Activin B, activin A, or both was immunologically neutralized in mice with progressive or established carbon tetrachloride (CCl 4 )-induced liver fibrosis. Hepatic and circulating activin B was increased in human patients with liver fibrosis caused by several liver diseases. In mice, hepatic and circulating activin B exhibited persistent elevation following the onset of several types of liver injury, whereas activin A displayed transient increases. The results revealed a close correlation of activin B with liver injury regardless of etiology and species. Injured hepatocytes produced excessive activin B. Neutralizing activin B largely prevented, as well as improved, CCl 4 -induced liver fibrosis, which was augmented by co-neutralizing activin A. Mechanistically, activin B mediated the activation of c-Jun-N-terminal kinase (JNK), the induction of inducible nitric oxide synthase (iNOS) expression, and the maintenance of poly (ADP-ribose) polymerase 1 (PARP1) expression in injured livers.Moreover, activin B directly induced a profibrotic expression profile in hepatic stellate cells (HSCs) and stimulated these cells to form a septa structure.
Conclusions:We demonstrate that activin B, cooperating with activin A, mediates the activation or expression of JNK, iNOS, and PARP1 and the activation of HSCs, driving the initiation and progression of liver fibrosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.