Circadian dysfunction is a common attribute of many neurodegenerative diseases, most of which are associated with neuroinflammation. Circadian rhythm dysfunction has been associated with inflammation in the periphery, but the role of the core clock in neuroinflammation remains poorly understood. Here we demonstrate that Rev-erbα, a nuclear receptor and circadian clock component, is a mediator of microglial activation and neuroinflammation. We observed time-of-day oscillation in microglial immunoreactivity in the hippocampus, which was disrupted in Rev-erbα −/− mice. Rev-erbα deletion caused spontaneous microglial activation in the hippocampus and increased expression of proinflammatory transcripts, as well as secondary astrogliosis. Transcriptomic analysis of hippocampus from Rev-erbα −/− mice revealed a predominant inflammatory phenotype and suggested dysregulated NF-κB signaling. Primary Rev-erbα −/− microglia exhibited proinflammatory phenotypes and increased basal NF-κB activation. Chromatin immunoprecipitation revealed that Reverbα physically interacts with the promoter regions of several NF-κB-related genes in primary microglia. Loss of Rev-erbα in primary astrocytes had no effect on basal activation but did potentiate the inflammatory response to lipopolysaccharide (LPS). In vivo, Reverbα −/− mice exhibited enhanced hippocampal neuroinflammatory responses to peripheral LPS injection, while pharmacologic activation of Rev-erbs with the small molecule agonist SR9009 suppressed LPSinduced hippocampal neuroinflammation. Rev-erbα deletion influenced neuronal health, as conditioned media from Rev-erbα-deficient primary glial cultures exacerbated oxidative damage in cultured neurons. Reverbα −/− mice also exhibited significantly altered cortical resting-state functional connectivity, similar to that observed in neurodegenerative models. Our results reveal Rev-erbα as a pharmacologically accessible link between the circadian clock and neuroinflammation.Rev-erbα | circadian | microglia | neuroinflammation C ircadian clocks allow organisms to precisely synchronize internal physiological processes with their external environment. A conserved transcriptional-translational feedback loop known as the core circadian clock controls cycles of protein expression that produce transcriptional and physiologic rhythms. This core circadian clock consists of the transcriptional activators BMAL1 and CLOCK, which drive transcription of their own transcriptional repressors, including CRYPTOCHROME (CRY), PE-RIOD (PER), and REV-ERB proteins (1). The circadian system regulates a variety of critical cellular processes, including aspects of metabolism, inflammation, and redox homeostasis (2). Disruptions of the clock or its associated proteins have been implicated in pathological conditions ranging from cancer to neurodegenerative diseases (2-4). However, the roles of cellular circadian clocks in brain health and neuroinflammation are still poorly understood.Aberrant glial cell activation and neuroinflammation are hallmarks of many neuro...
Repetitive physical exercise induces physiological adaptations in skeletal muscle that improves exercise performance and is effective for the prevention and treatment of several diseases. Genetic evidence indicates that the orphan nuclear receptors estrogen receptor-related receptors (ERRs) play an important role in skeletal muscle exercise capacity. Three ERR subtypes exist (ERRα, β, and γ), and although ERRβ/γ agonists have been designed, there have been significant difficulties in designing compounds with ERRα agonist activity. Additionally, there are limited synthetic agonists that can be used to target ERRs in vivo.Here, we report the identification of a synthetic ERR pan agonist, SLU-PP-332, that targets all three ERRs but has the highest potency for ERRα. Additionally, SLU-PP-332 has sufficient pharmacokinetic properties to be used as an in vivo chemical tool. SLU-PP-332 increases mitochondrial function and cellular respiration in a skeletal muscle cell line. When administered to mice, SLU-PP-332 increased the type IIa oxidative skeletal muscle fibers and enhanced exercise endurance. We also observed that SLU-PP-332 induced an ERRα-specific acute aerobic exercise genetic program, and the ERRα activation was critical for enhancing exercise endurance in mice. These data indicate the feasibility of targeting ERRα for the development of compounds that act as exercise mimetics that may be effective in the treatment of numerous metabolic disorders and to improve muscle function in the aging.
Cardiac metabolic dysfunction is a hallmark of heart failure. Estrogen related receptors ERRα and ERRγ are essential regulators for cardiac metabolism. Therefore, activation of ERR could be a potential therapeutic intervention for heart failure. However, no natural or synthetic ERR agonist is available to demonstrate their pharmacological effect in vivo. Using a structure-based design approach, we designed and synthesized two structurally distinct pan-ERR agonists, SLU-PP-332 (332) and SLU-PP-915 (915), which significantly improved ejection fraction and ameliorated fibrosis against pressure overload-induced heart failure without affecting cardiac hypertrophy. Mechanistically, a broad-spectrum of metabolic genes were transcriptionally activated by ERR agonists, particularly genes involved in fatty acid metabolism and mitochondrial function, which were mainly mediated by ERRγ. Metabolomics analysis showed significant normalization of metabolic profiles in fatty acid/lipid and TCA/OXPHOS metabolites by 915 in the mouse heart with 6-week pressure overload. Autophagy was also induced by ERR agonists in cardiomycoyte. On the other hand, ERR agonism led to downregulation of cell cycle and development pathways, which was partially mediated by E2F1 in cardiomyocyte. In summary, ERR agonists maintain oxidative metabolism, which confers cardiac protection against pressure overload-induced heart failure in vivo. Our results provided direct pharmacological evidence supporting the further development of ERR agonists as novel heart failure therapeutics in vivo.
Repetitive physical exercise induces physiological adaptations in skeletal muscle that improves exercise performance and is effective for the prevention and treatment of several diseases. Here we report the identification of a synthetic agonist for the orphan nuclear receptor ERRα (estrogen receptor-related receptor α), SLU-PP-332, that activates an acute aerobic exercise genetic program in skeletal muscle in an ERRa-dependent manner. SLU-PP-332 increases mitochondrial function and cellular respiration consistent with induction of this genetic program. When administered to mice, SLU-PP-332 increased the type IIa oxidative skeletal muscle fibers and enhanced exercise endurance. These data indicate the feasibility of targeting ERRα for development of compounds that act as exercise mimetics that may be effective in treatment of numerous metabolic disorders and to improve muscle function in the aging.
No abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.