[Mo(O)(O(2))(2)(L)(2)] compounds (L = pz, pyrazole; dmpz, 3,5-dimethylpyrazole) were reacted stoichiometrically, in the absence of an oxidant, with cis-cyclooctene in an ionic liquid medium where selective formation of the corresponding epoxide was observed. However, this oxo-transfer reaction was not observed for some other olefins, suggesting that alternative reaction pathways exist for these epoxidation processes. Subsequently, DFT studies investigating the oxodiperoxomolybdenum catalysed epoxidation model reaction for ethylene with hydrogen peroxide oxidant were performed. The well known Sharpless mechanism was first analysed for the [Mo(O)(O(2))(2)(dmpz)(2)] model catalyst and a low energy reaction pathway was found, which fits well with the observed experimental results for cis-cyclooctene. The structural parameters of the computed dioxoperoxo intermediate [Mo(O)(2)(O(2))(dmpz)(2)] in the Sharpless mechanism compare well with those found for the same moiety within the [Mo(4)O(16)(dmpz)(6)] complex, for which the full X-ray report is presented here. A second mechanism for the model epoxidation reaction was theoretically investigated in order to clarify why some olefins, which do not react stoichiometrically in the absence of an oxidant, showed low level conversions in catalytic conditions. A Thiel-type mechanism, in which the oxidant activation occurs prior to the oxo-transfer step, was considered. The olefin attack of the hydroperoxide ligand formed upon activation of hydrogen peroxide with the [Mo(O)(O(2))(2)(dmpz)(2)] model catalyst was not possible to model. The presence of two dmpz ligands coordinated to the molybdenum centre prevented the olefin attack for steric reasons. However, a low energy reaction pathway was identified for the [Mo(O)(O(2))(2)(dmpz)] catalyst, which can be formed from [Mo(O)(2)(O(2))(dmpz)(2)] by ligand dissociation. Both mechanisms, Sharpless- and Thiel-type, were found to display comparable energy barriers and both are accessible alternative pathways in the oxodiperoxomolybdenum catalysed olefin epoxidation. Additionally, the molecular structures of [Mo(O)(O(2))(2)(H(2)O)(pz)] and [Hdmpz](4)[Mo(8)O(22)(O(2))(4)(dmpz)(2)]·2H(2)O and the full X-ray report of [Mo(O)(O(2))(2)(pz)(2)] are also presented.
The copper catalysed aerobic oxidation of selected alcohol substrates in supercritical carbon dioxide (scCO(2)), employing a range of simple copper(II) catalyst compounds, is here described. The copper acetate complex of polydimethylsiloxane (PDMS) functionalised pyridine (1), compound 2, has previously been synthesised and characterised by us and its solubility in scCO(2) demonstrated. Due to this solubility we anticipated that the selective aerobic oxidation of alcohols to aldehydes could be homogeneously catalysed by this compound in scCO(2) in combination with the co-catalyst 2,2,6,6-tetramethylpiperidin-1-yloxy free radical (TEMPO). Our initial results showed that complete oxidation of 4-nitrobenzyl alcohol was achieved within 4 h of reaction. However, the activities of analogous copper derivatives containing simpler pyridine substituents, [Cu(AcO)(2)(py)](2) and [Cu(AcO)(2)(4VP)](2) (4VP = 4-vinylpyridine), were shown to be similar, in spite of their negligible solubility in scCO(2). When we repeated the reactions in highly non-polar hexane rather than scCO(2) similar observations were made. In both cases, as 2 is soluble and the pyridine analogues are not, a much higher reaction rate was anticipated for 2 as it is the only compound capable of homogeneous catalysis. However, in some cases slightly better activities were observed for [Cu(AcO)(2)(py)](2) rather than for the PDMS functionalised analogue, 2. Thus, despite poor catalyst solubility typically being very inhibitory in this type of catalytic process, in this system solubilisation of the catalyst is not necessary. In continuation the activity of silica supported copper complexes was therefore investigated. Employing such catalysts the 4-nitrobenzyl and benzyl alcohol substrates were completely oxidised to the corresponding aldehydes in scCO(2), this time employing lower catalyst loadings. Other types of alcohol substrate showed more limited conversions however. To conclude, alcohol oxidation in the non-conventional green solvent scCO(2), with the benign terminal oxidant, dioxygen, and simple, cheap, easily prepared metal catalyst compounds was demonstrated. This is the first copper-TEMPO catalysed alcohol oxidation system in scCO(2) to be described.
Biphasic catalytic olefin epoxidation systems consisting of oxodiperoxomolybdenum catalysts in 1-n-alkyl-3-methylimidazolium hexafluorophosphate ionic liquid (IL) media with aqueous hydrogen peroxide oxidant were optimised by tuning the molecular structure of the IL and employing N-heterocyclic donor base additives to inhibit hydrolysis and enhance the activity of the catalyst. The latter study was only made possible by the solubilising properties of the IL media. Of the bases investigated, pyrazoles were identified as the most efficient additive species and the best results were obtained using 3,5-dimethylpyrazole. Immobilisation of the catalyst in the IL allowed for very efficient catalyst recycling. Finally, the compound [MoO(O 2 ) 2 (3-Mepz) 2 ] (3-Mepz = 3-methylpyrazole) was characterised and its structure determined by X-ray crystallography.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.