Rose black spot, caused by Diplocarpon rosae, is one of the most devastating foliar diseases of cultivated roses (Rosa spp.). The globally distributed pathogen has the potential to cause large economic losses in the outdoor cultivation of roses. Fungicides are the primary method to manage the disease, but are often viewed unfavorably by home gardeners due to potential environmental and health impacts. As such, rose cultivars with genetic resistance to black spot are highly desired. The tetraploid climbing rose Brite EyesTM (‘RADbrite’) is known for its resistance to black spot. To better characterize the resistance present in Brite EyesTM, phenotyping was conducted on a 94 individual F1 population developed by crossing Brite EyesTM to the susceptible tetraploid rose ‘Morden Blush’. Brite EyesTM was resistant to all D. rosae races evaluated except for race 12. The progeny were either resistant or susceptible to all races (2, 3, 8, 9, 10, 11, and 13) evaluated. The segregation ratio was 1:1 (χ2 = 0.3830, P = 0.5360) suggesting resistance is conferred by a single locus. The roses were genotyped with the WagRhSNP 68K Axiom array and the ‘polymapR’ package was used to construct a map. A single resistance locus (Rdr4) was identified on the long arm of chromosome 5 homoeolog 4. Three resistance loci have been previously identified (Rdr1, Rdr2, and Rdr3). Both Rdr1 and Rdr2 are located on a chromosome 1 homoeolog. The chromosomal location of Rdr3 is unknown, however, races 3 and 9 are virulent on Rdr3. Rdr4 is either a novel gene or an allele of Rdr3 as it provides resistance to races 3 and 9. Due to its broad resistance, Rdr4 is an excellent gene to introgress into new rose cultivars.
The fungal pathogen, Diplocarpon rosae, infects only roses (Rosa spp.) and leads to rose black spot disease. Rose black spot is the most problematic disease of outdoor-grown roses worldwide due to the potential for rapid leaf chlorosis and defoliation. Eleven races of the pathogen were previously characterized from isolates collected in North America and Europe. Isolates of D. rosae obtained from infected leaves of the roses Brite EyesTM (‘RADbrite’; isolate BEP; collected in West Grove, PA) and Oso Easy® Paprika (‘CHEwmaytime’; isolate PAP; collected in Minneapolis, MN) proved to have unique infection patterns using the established host differential with the addition of Lemon FizzTM (‘KORlem’). The new races are designated race 12 (BEP) and race 13 (PAP), respectively, and Lemon FizzTM should be included in the updated host differential because it distinguishes races 7 and 12. Additionally, inconsistent infections and limited sporulation were found in the host differential Knock Out® (‘RADrazz’) for races 7 and 12. Expanding the collection of D. rosae races supports ongoing research efforts, including host resistance gene discovery and breeding new rose cultivars with increased and potentially durable resistance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.