Background: Supracondylar humerus (SCH) fractures are the most common elbow fractures in children. Historically, displaced (Gartland type 3) SCH fractures have been treated with closed reduction and percutaneous pinning. Fluoroscopic imaging is used intraoperatively in order to assess adequate reduction of the fracture fragments before pinning. On lateral fluoroscopic and radiographic images, a lateral rotation percentage (LRP) can be estimated in order to assess rotational deformity. The purpose of this study was to determine the true rotational deformity of distal humerus fracture fragments in SCH fractures based upon the LRP using a clinically relevant laterally based pinning technique. Methods: In this study, a sawbones model was used to examine the correlation between calculated LRP and the true degree of rotational deformity with 3 of the most common extension-type SCH fracture types (low transverse, high transverse, and lateral oblique). Because fracture stability was not the focus of this study, a single pin was used to hold the construct and allow for fragment rotation along a fixed axis. In this study, 2 of the authors independently measured rotational deformity and compared this with LRP on fluoroscopic lateral imaging of a sawbones model at 0 to 45 degrees of rotational deformity. Results:The LRP of all 3 patterns demonstrated a near linear increase from 0 to 45 degrees with maximum LRP measured at 45 degrees for each of the 3 patterns. Univariate linear regression demonstrated an increase in LRP for the low transverse pattern of 2.02% for every degree of rotation deformity (R 2 = 0.97), 2.29% for the lateral oblique pattern (R 2 = 0.986), and 1.17% for the high transverse pattern (R 2 = 0.971). Maximum LRP was measured at 45 degrees for all 3 patterns with a mean of 53.5% for the high transverse pattern, 93.5% for the low transverse pattern, and 111.2% for the lateral oblique pattern. A higher LRP was measured with increasing degrees of rotational displacement in the low transverse and lateral oblique patterns for all degrees of rotational deformity compared to the high transverse pattern. Conclusion: There is a near linear correlation between the degree of malrotation and the LRP with more superior metaphyseal fracture patterns demonstrating a lower LRP than inferior fracture patterns. Clinical Relevance: Using our data one can estimate the degree of malrotation based on the LRP on radiographs in the clinical setting. Level of Evidence: Not applicable (basic-science article).
Recent advancements in computer-assisted surgery have led to a renewed interest in robotic-assisted hip arthroplasty. This technology assists with component position which is especially useful in prior trauma or dysplasia cases. We present a case of a surgical hip fusion conversion to total hip arthroplasty with the use of robotic-assisted technology. Enhanced preoperative planning with the ability to manipulate implant position before execution can be invaluable during complex procedures. Further research is warranted before revision cases using computerized navigation systems becomes more prevalent.
Barley is a major cereal crop for temperate climates, and a diploid genetic model for polyploid wheat. Cereal straw biomass is an attractive source of feedstock for green technologies but lignin, a key determinant of feedstock recalcitrance, complicates bio-conversion processes. However, manipulating lignin content to improve the conversion process could negatively affect agronomic traits. An alternative approach is to manipulate lignin composition which influences the physical and chemical properties of straw. This study validates the function of a barley ferulate 5-hydroxylase gene and demonstrates that its downregulation using the RNA-interference approach substantially impacts lignin composition. We identified five barley genes having putative ferulate 5-hydroxylase activity. Downregulation of HvF5H1 substantially reduced the lignin syringyl/guaiacyl (S/G) ratio in straw while the lignin content, straw mechanical properties, plant growth habit, and grain characteristics all remained unaffected. Metabolic profiling revealed significant changes in the abundance of 173 features in the HvF5H1-RNAi lines. The drastic changes in the lignin polymer of transgenic lines highlight the plasticity of barley lignification processes and the associated potential for manipulating and improving lignocellulosic biomass as a feedstock for green technologies. On the other hand, our results highlight some differences between the lignin biosynthetic pathway in barley, a temperate climate grass, and the warm climate grass, rice, and underscore potential diversity in the lignin biosynthetic pathways in grasses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.