Photochemical control over irreversible inhibition was shown using Ru(II)-caged inhibitors of cathepsin L. Levels of control were dependent on where the Ru(II) complex was attached to the organic inhibitor, reaching >10:1 with optimal placement. A new strategy for photoreleasing Ru(II) fragments from inhibitor-enzyme conjugates is also reported.
A concise and efficient total synthesis of microtubule inhibitor tryprostatin B (1) is described. The key step is the preparation of a diprenylated gramine salt 9a. In this step, the prenyl group is incorporated at the 2-position of the indole moiety by direct lithiation of the Boc-protected gramine. We also developed and optimized the asymmetric phase-transfer-catalyzed reaction with salt 9a to provide the C2-prenyl tryptophan intermediate 2 resulting in 93% enantiomeric excess (ee) and 65% yield. The total synthesis of 1 is done in six steps with 35% overall yield.
Two new Re(I)- and Ru(II)-based inhibitors were synthesized with the formulas [Re(phen)(CO)3(1)](OTf) (7; phen = 1,10-phenanthroline, OTf = trifluoromethanesulfonate) and [Ru(bpy)2(2)](Cl)2 (8; bpy = 2,2′-bipyridine), where 1 and 2 are the analogues of CLIK-148, an epoxysuccinyl-based cysteine cathepsin L inhibitor (CTSL). Compounds 7 and 8 were characterized using various spectroscopic techniques and elemental analysis; 7 and 8 both show exceptionally long excited state lifetimes. Re(I)-based complex 7 inhibits CTSL in the low nanomolar range, affording a greater than 16-fold enhancement of potency relative to the free inhibitor 1 with a second-order rate constant of 211000 ± 42000 M−1 s−1. Irreversible ligation of 7 to papain, a model of CTSL, was analyzed with mass spectroscopy, and the major peak shown at 24283 au corresponds to that of papain-1-Re(CO)3(phen). Compound 7 was well tolerated by DU-145 prostate cancer cells, with toxicity evident only at high concentrations. Treatment of DU-145 cells with 7 followed by imaging via confocal microscopy showed substantial intracellular fluorescence that can be blocked by the known CTSL inhibitor CLIK-148, consistent with the ability of 7 to label CTSL in living cells. Overall this study reveals that a Re(I) complex can be attached to an enzyme inhibitor and enhance potency and selectivity for a medicinally important target, while at the same time allowing new avenues for tracking and quantification due to long excited state lifetimes and non-native element composition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.