The delivery of therapeutic compounds to target tissues is a central challenge in treating disease. Externally controlled drug release systems hold potential to selectively enhance localized delivery. Here we describe liposomes doped with porphyrin–phospholipid that are permeabilized directly by near-infrared light. Molecular dynamics simulations identified a novel light-absorbing monomer esterified from clinically approved components predicted and experimentally demonstrated to give rise to a more stable porphyrin bilayer. Light-induced membrane permeabilization is enabled with liposomal inclusion of 10 molar % porphyrin–phospholipid and occurs in the absence of bulk or nanoscale heating. Liposomes reseal following laser exposure and permeability is modulated by varying porphyrin–phospholipid doping, irradiation intensity or irradiation duration. Porphyrin–phospholipid liposomes demonstrate spatial control of release of entrapped gentamicin and temporal control of release of entrapped fluorophores following intratumoral injection. Following systemic administration, laser irradiation enhances deposition of actively loaded doxorubicin in mouse xenografts, enabling an effective single-treatment antitumour therapy.
The cell membrane plays an important role in the molecular mechanism of amyloid toxicity associated with Alzheimer's disease. The membrane's chemical composition and the incorporation of small molecules, such as melatonin and cholesterol, can alter its structure and physical properties, thereby affecting its interaction with amyloid peptides. Both melatonin and cholesterol have been recently linked to amyloid toxicity. Melatonin has been shown to have a protective role against amyloid toxicity. However, the underlying molecular mechanism of this protection is still not well understood, and cholesterol's role remains controversial. We used small-angle neutron diffraction (SAND) from oriented lipid multi-layers, small-angle neutron scattering (SANS) from unilamellar vesicles experiments and Molecular Dynamics (MD) simulations to elucidate non-specific interactions of melatonin and cholesterol with 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) and 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) model membranes. We conclude that melatonin decreases the thickness of both model membranes by disordering the lipid hydrocarbon chains, thus increasing membrane fluidity. This result is in stark contrast to the much accepted ordering effect induced by cholesterol, which causes membranes to thicken.
The stratum corneum is the uppermost layer of the skin and acts as a barrier to keep out contaminants and retain moisture. Understanding the molecular structure and behavior of this layer will provide guidance for optimizing its biological function. In this study we use a model mixture comprised of equimolar portions of ceramide NS (24:0), lignoceric acid, and cholesterol to model the effect of the addition of small amounts of oleic acid to the bilayer at 300 and 340 K. Five systems at each temperature have been simulated with concentrations between 0 and 0.1 mol % oleic acid. Our major finding is that subdiffusive behavior over the 200 ns time scale is evident in systems at 340 K, with cholesterol diffusion being enhanced with increased oleic acid. Importantly, cholesterol and other species diffuse faster when radial densities indicate nearest neighbors include more cholesterol. We also find that, with the addition of oleic acid, the bilayer midplane and interfacial densities are reduced and there is a 3% decrease in total thickness occurring mostly near the hydrophilic interface at 300 K with reduced overall density at 340 K. Increased interdigitation occurs independent of oleic acid with a temperature increase. Slight ordering of the long non-hydroxy fatty acid of the ceramide occurs near the hydrophilic interface as a function of the oleic acid concentration, but no significant impact on hydrogen bonding is seen in the chosen oleic acid concentrations.
Melatonin is a pineal hormone that has been shown to have protective effects in several diseases that are associated with cholesterol dysregulation, including cardiovascular disease, Alzheimer's disease, and certain types of cancers. Cholesterol is a major membrane constituent with both a structural and functional influence. It is also known that melatonin readily partitions into cellular membranes. We investigated the effects of melatonin and cholesterol on the structure and physical properties of a 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) monolayer as a simple membrane model using the Langmuir-Blodgett (L-B) monolayer technique and molecular dynamics (MD) simulations. We report that melatonin increases the area per lipid and elastic compressibility of the DPPC monolayer in a concentration dependent manner, while cholesterol has the opposite effect. When both melatonin and cholesterol were present in the monolayer, the compression isotherms showed normalization of the area per molecule towards that of the pure DPPC monolayer, thus indicating that melatonin counteracts and alleviates cholesterol's effects. Atomistic MD simulations of melatonin enriched DPPC systems correlate with our experimental findings and illustrate the structural effects of both cholesterol and melatonin. Our results suggest that melatonin is able to lessen the influence of cholesterol through two different mechanisms. Firstly, we have shown that melatonin has a fluidizing effect on monolayers comprising only lipid molecules. Secondly, we also observe that melatonin interacts directly with cholesterol. Our findings suggest a direct nonspecific interaction of melatonin may be a mechanism involved in reducing cholesterol associated membrane effects, thus suggesting the existence of a new mechanism of melatonin's action. This may have important biological relevance in addition to the well-known anti-oxidative and receptor binding effects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.