Methylation of small molecules and macromolecules is crucial in metabolism, cell signaling, and epigenetic programming and is most often achieved by S-adenosylmethionine (SAM)-dependent methyltransferases. Most employ an S(N)2 mechanism to methylate nucleophilic sites on their substrates, but recently, radical SAM enzymes have been identified that methylate carbon atoms that are not inherently nucleophilic via the intermediacy of a 5'-deoxyadenosyl 5'-radical. We have determined the mechanisms of two such reactions targeting the sp(2)-hybridized carbons at positions 2 and 8 of adenosine 2503 in 23S ribosomal RNA, catalyzed by RlmN and Cfr, respectively. In neither case is a methyl group transferred directly from SAM to the RNA; rather, both reactions proceed by a ping-pong mechanism involving intermediate methylation of a conserved cysteine residue.
The radical SAM (RS) proteins RlmN and Cfr catalyze methylation of carbons 2 and 8, respectively, of adenosine 2503 in 23S rRNA. Both reactions are similar in scope, entailing the synthesis of a methyl group partially derived from S-adenosylmethionine (SAM) onto electrophilic sp2-hybridized carbon atoms via the intermediacy of a protein S-methylcysteinyl (mCys) residue. Both proteins contain five conserved Cys residues, each of which is required for turnover. Three cysteines lie in a canonical RS CxxxCxxC motif and coordinate a [4Fe–4S]-cluster cofactor. The remaining two cysteines are at opposite ends of the polypeptide. Herein we show that each protein contains only the one “radical SAM” [4Fe–4S] cluster, and that the two remaining conserved cysteines do not coordinate additional iron-containing species. In addition, we show that while wild-type RlmN bears the C355 mCys residue in its as-isolated state, RlmN that is either engineered to lack the [4Fe–4S] cluster by substitution of the coordinating cysteines, or isolated from Escherichia coli cultured under iron-limiting conditions, does not bear a C355 mCys residue. Reconstitution of the [4Fe–4S] cluster on wild-type apo RlmN followed by addition of SAM results in rapid production of S-adenosylhomocysteine (SAH) and the mCys residue, while treatment of apo RlmN with SAM affords no observable reaction. These results indicate that in Cfr and RlmN, SAM bound to the unique iron of the [4Fe–4S] cluster displays two reactivities. It serves to methylate C355 of RlmN (C338 of Cfr), or it serves to generate the 5’-deoxyadenosyl 5’-radical, required for substrate-dependent methyl synthase activity.
The anaerobic sulfatase maturating enzyme from Clostridium perfringens (anSMEcpe) catalyzes the two-electron oxidation of a cysteinyl residue on a cognate protein to a formyglycyl residue (FGly) using a mechanism that involves organic radicals. The FGly residue plays a unique role as a cofactor in a class of enzymes termed arylsulfatases, which catalyze the hydrolysis of various organosulfate monoesters. anSMEcpe has been shown to be a member of the radical S-adenosylmethionine (SAM) family of enzymes, [4Fe–4S] cluster–requiring proteins that use a 5’-deoxyadenosyl 5’-radical (5’-dA•) generated from a reductive cleavage of SAM to initiate radical-based catalysis. Herein, we show that anSMEcpe contains in addition to the [4Fe–4S] cluster harbored by all radical SAM (RS) enzymes, two additional [4Fe–4S] clusters, similar to the radical SAM protein AtsB, which catalyzes the two-electron oxidation of a seryl residue to a FGly residue. We show by size-exclusion chromatography that both AtsB and anSMEcpe are monomeric proteins, and site-directed mutagenesis studies on AtsB reveal that individual Cys→Ala substitutions at seven conserved positions result in insoluble protein, consistent with those residues acting as ligands to the two additional [4Fe–4S] clusters. Ala substitutions at an additional conserved Cys residue (C291 in AtsB; C276 in anSMEcpe) afford proteins that display intermediate behavior. These proteins exhibit reduced solubility and drastically reduced activity, behavior that is conspicuously similar to that of a critical Cys residue in BtrN, another radical SAM dehydrogenase [Grove, T. L., et al (2010) Biochemistry, 49, 3783–3785]. We also show that wild-type anSMEcpe acts on peptides containing other oxidizeable amino acids at the target position. Moreover, we show that the enzyme will convert threonyl peptides to the corresponding ketone product, and also allo-threonyl peptides, but with a significantly reduced efficiency, suggesting that the proS hydrogen atom of the normal cysteinyl substrate is stereoselectively removed during turnover. Lastly, we show that the electron generated during catalysis by AtsB and anSMEcpe can utilized for multiple turnovers, albeit through a reduced flavodoxin-mediated pathway.
RlmN and Cfr are methyltransferases/methylsynthases that belong to the radical S-adenosylmethionine superfamily of enzymes. RlmN catalyzes C2 methylation of adenosine 2503 (A2503) of 23S rRNA, while Cfr catalyzes C8 methylation of the exact same nucleotide, and will subsequently catalyze C2 methylation if the site is unmethylated. A key feature of the unusual mechanisms of catalysis proposed for these enzymes is the attack of a methylene radical, derived from a methylcysteine residue, onto the carbon center undergoing methylation to generate a paramagnetic protein–nucleic acid cross-linked species. This species has been thoroughly characterized during Cfr-dependent C8 methylation, but does not accumulate to detectible levels in RlmN-dependent C2 methylation. Herein, we show that inactive C118S/A variants of RlmN accumulate a substrate-derived paramagnetic species. Characterization of this species by electron paramagnetic resonance spectroscopy in concert with strategic isotopic labeling shows that the radical is delocalized throughout the adenine ring of A2503, although predominant spin density is on N1 and N3. Moreover, 13C hyperfine interactions between the radical and the methylene carbon of the formerly [methyl-13C]Cys355 residue show that the radical species exists in a covalent cross-link between the protein and the nucleic acid substrate. X-ray structures of RlmN C118A show that, in the presence of SAM, the substitution does not alter the active site structure compared to that of the wild-type enzyme. Together, these findings have new mechanistic implications for the role(s) of C118 and its counterpart in Cfr (C105) in catalysis, and suggest involvement of the residue in resolution of the cross-linked species via a radical mediated process.
Edited by Ruma Banerjee Methyl coenzyme M reductase (MCR) catalyzes the last step in the biological production of methane by methanogenic archaea, as well as the first step in the anaerobic oxidation of methane to methanol by methanotrophic archaea. MCR contains a number of unique post-translational modifications in its ␣ subunit, including thioglycine, 1-N-methylhistidine, S-methylcysteine, 5-C-(S)-methylarginine, and 2-C-(S)-methylglutamine. Recently, genes responsible for the thioglycine and methylarginine modifications have been identified in bioinformatics studies and in vivo complementation of select mutants; however, none of these reactions has been verified in vitro. Herein, we purified and biochemically characterized the radical S-adenosylmethionine (SAM) protein MaMmp10, the product of the methanogenesis marker protein 10 gene in the methaneproducing archaea Methanosarcina acetivorans. Using an array of approaches, including kinetic assays, LC-MS-based quantification, and MALDI TOF-TOF MS analyses, we found that MaMmp10 catalyzes the methylation of the equivalent of Arg 285 in a peptide substrate surrogate, but only in the presence of cobalamin. We noted that the methyl group derives from SAM, with cobalamin acting as an intermediate carrier, and that MaMmp10 contains a C-terminal cobalamin-binding domain. Given that Mmp10 has not been annotated as a cobalamin-binding protein, these findings suggest that cobalamin-dependent radical SAM proteins are more prevalent than previously thought. Methyl coenzyme M reductase (MCR) 2 catalyzes the final and rate-limiting step in methanogenesis, which is the conver
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.