These findings indicate that hypothermic preconditioning induces a form of delayed tolerance to focal ischemic damage. The time course over which tolerance occurs and the ability of a protein synthesis inhibitor to block tolerance suggest that increased expression of one or more gene products is necessary to establish tissue tolerance following hypothermia. The attenuation of hypoxic injury in vitro following in vivo preconditioning indicates that tolerance is due, at least in part, to direct effects on the brain neuropil. Hypothermic preconditioning could provide a relatively low-risk approach for improving surgical outcome after invasive surgery, including high-risk neurological and cardiovascular procedures.
The rat growth hormone (rGH) gene is uniquely expressed in a subset of cells from the anterior pituitary. This strongly cell type specific expression is controlled by both cis-acting positive sequences that bind the pituitary specific transcription factor Pit-1 and cis-acting negative regulatory elements that lie upstream of the Pit-1 sites. The negative elements act to prevent expression of the gene in inappropriate cell types. Here we report that the most proximal rGH silencer element is specifically bound by a protein found in a number of rGH non-expressing cell types and which exerts a negative regulatory effect through the recognition of this rGH element in transient transfection assays. The sequence recognized by this protein is similar to sequences of several other negative regulatory elements as well as to the consensus binding site for the transcription factor NF1. However, the 45 KDa molecular weight identified for this protein does not correspond to any of the sizes previously reported for NF1 suggesting that it is likely to represent a new member amongst this family of transcription factors.
Malformations of the neocortex are a common cause of human epilepsy; however, the critical issue of how disturbances in cortical organization render neurons epileptogenic remains controversial. The present study addressed this issue by studying inhibitory structure and function before seizure onset in the telencephalic internal structural heterotopia (tish) rat, which is a genetic model of heightened seizure susceptibility associated with a prominent neocortical malformation. Both normally positioned (normotopic) and misplaced (heterotopic) pyramidal neurons in the tish neocortex exhibited lower resting membrane potentials and a tendency toward higher input resistance compared with pyramidal neurons from control brains. GABAergic synaptic transmission was attenuated in the tish cortex, characterized by significant reductions in the frequency of spontaneous IPSCs (sIPSCs) and miniature IPSCs recorded from pyramidal neurons. In addition, the amplitudes of sIPSCs were reduced in the tish neocortex, an effect that was more profound in the normotopic cells. Immunohistochemical assessment of presynaptic GABAergic terminals showed a reduction in terminals surrounding pyramidal cell somata in normotopic and heterotopic tish neocortex. The attenuation of inhibitory innervation was more prominent for normotopic neurons and was associated with a reduction in a subset of GABAergic interneurons expressing the calcium-binding protein parvalbumin. Together, these findings indicate that key facets of inhibitory GABAergic neurotransmission are disturbed before seizure onset in a brain predisposed to developing seizures. Such alterations represent a rational substrate for reduced seizure thresholds associated with certain cortical malformations.
Summary:Purpose: Misplaced (heterotopic) cortical neurons are a common feature of developmental epilepsies. To better understand seizure disorders associated with cortical heterotopia, the sites of aberrant discharge activity were investigated in vivo and in vitro in a seizure-prone mutant rat (tish) exhibiting subcortical band heterotopia. Methods: Depth electrode recordings and postmortem assessment of regional cfos mRNA levels were used to characterize the distribution of aberrant discharge activity during spontaneous seizures in vivo. Electrophysiologic recordings of spontaneous and evoked activity also were performed by using in vitro brain slices from the tish rat treated with proconvulsant drugs (penicillin and 4-aminopyridine). Results: Depth electrode recordings demonstrate that seizure activity begins almost simultaneously in the normotopic and heterotopic areas of the tish neocortex. Spontaneous seizures induce c-fos mRNA in normotopic and heterotopic neocortical areas, and limbic regions. The threshold concentrations of proconvulsant drugs for inducing epileptiform spiking were similar in the normotopic and heterotopic areas of tish brain slices. Manipulations that blocked communication between the norniotopic and heterotopic areas of the cortex inhibited spiking in the heterotopic, but not the normotopic, area of the cortex. Conclusions: These findings indicate that aberrant discharge activity occurs in normotopic and heterotopic areas of the neocortex, and in certain limbic regions during spontaneous seizures in the tish rat. Normotopic neurons are more prone to exhibit epileptiform activity than are heterotopic neurons in the tish cortex, and heterotopic neurons are recruited into spiking by activity initiated in normotopic neurons. The findings indicate that seizures in the tish brain primarily involve telencephalic structures, and suggest that normotopic neurons are responsible for initiating seizures in the dysplastic neocortex.
Early cellular development was studied in the neocortex of the tish rat. This neurological mutant is seizure-prone and displays cortical heterotopia similar to those observed in certain epileptic patients. The present study demonstrates that a single cortical preplate is formed in a typical superficial position of the developing tish neocortex. In contrast, two cortical plates are formed: one in a normotopic position and a second in a heterotopic position in the intermediate zone. As the normotopic cortical plate is formed, it characteristically separates the subplate cells from the superficial Cajal-Retzius cells. In contrast, the heterotopic cortical plate is not intercalated between the preplate cells because of its deeper position in the developing cortex. Cellular proliferation occurs in two zones of the developing tish cortex. One proliferative zone is located in a typical position in the ventricular/subventricular zone. A second proliferative zone is located in a heterotopic position in the superficial intermediate zone, i.e., between the two cortical plates. This misplaced proliferative zone may contribute cells to both the normotopic and heterotopic cortical plates. Taken together, these findings indicate that misplaced cortical plate cells, but not preplate cells, comprise the heterotopia of the tish cortex. Heterotopic neurogenesis is an early developmental event that is initiated before the migration of most cortical plate cells. It is concluded that misplaced cellular proliferation, in addition to disturbed neuronal migration, can play a key role in the formation of large cortical heterotopia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.