It is well established that different types of exercise can provide a powerful stimulus for mitochondrial biogenesis. However, there are conflicting findings in the literature, and a consensus has not been reached regarding the efficacy of high-intensity exercise to promote mitochondrial biogenesis in humans. The purpose of this review is to examine current controversies in the field and to highlight some important methodological issues that need to be addressed to resolve existing conflicts.
Key points Sleep restriction has previously been associated with the loss of muscle mass in both human and animal models. The rate of myofibrillar protein synthesis (MyoPS) is a key variable in regulating skeletal muscle mass and can be increased by performing high‐intensity interval exercise (HIIE), although the effect of sleep restriction on MyoPS is unknown. In the present study, we demonstrate that participants undergoing a sleep restriction protocol (five nights, with 4 h in bed each night) had lower rates of skeletal muscle MyoPS; however, rates of MyoPS were maintained at control levels by performing HIIE during this period. Our data suggest that the lower rates of MyoPS in the sleep restriction group may contribute to the detrimental effects of sleep loss on muscle mass and that HIIE may be used as an intervention to counteract these effects. Abstract The present study aimed to investigate the effect of sleep restriction, with or without high‐intensity interval exercise (HIIE), on the potential mechanisms underpinning previously‐reported sleep‐loss‐induced reductions to muscle mass. Twenty‐four healthy, young men underwent a protocol consisting of two nights of controlled baseline sleep and a five‐night intervention period. Participants were allocated into one of three parallel groups, matched for age, V̇normalO2peak, body mass index and habitual sleep duration; a normal sleep (NS) group [8 h time in bed (TIB) each night], a sleep restriction (SR) group (4 h TIB each night), and a sleep restriction and exercise group (SR+EX, 4 h TIB each night, with three sessions of HIIE). Deuterium oxide was ingested prior to commencing the study and muscle biopsies obtained pre‐ and post‐intervention were used to assess myofibrillar protein synthesis (MyoPS) and molecular markers of protein synthesis and degradation signalling pathways. MyoPS was lower in the SR group [fractional synthetic rate (% day–1), mean ± SD, 1.24 ± 0.21] compared to both the NS (1.53 ± 0.09) and SR+EX groups (1.61 ± 0.14) (P < 0.05). However, there were no changes in the purported regulators of protein synthesis (i.e. p‐AKTser473 and p‐mTORser2448) and degradation (i.e. Foxo1/3 mRNA and LC3 protein) in any group. These data suggest that MyoPS is acutely reduced by sleep restriction, although MyoPS can be maintained by performing HIIE. These findings may explain the sleep‐loss‐induced reductions in muscle mass previously reported and also highlight the potential therapeutic benefit of HIIE to maintain myofibrillar remodelling in this context.
BackgroundThe importance of concurrent exercise order for improving endurance and resistance adaptations remains unclear, particularly when sessions are performed a few hours apart. We investigated the effects of concurrent training (in alternate orders, separated by~3 hours) on endurance and resistance training adaptations, compared to resistance-only training. Materials and methodsTwenty-nine healthy, moderately-active men (mean ± SD; age 24.5 ± 4.7 y; body mass 74.9 ± 10.8 kg; height 179.7 ± 6.5 cm) performed either resistance-only training (RT, n = 9), or same-day concurrent training whereby high-intensity interval training was performed either 3 hours before (HIIT+RT, n = 10) or after resistance training (RT+HIIT, n = 10), for 3 d . wk -1 over 9 weeks. Training-induced changes in leg press 1-repetition maximal (1-RM) strength, countermovement jump (CMJ) performance, body composition, peak oxygen uptake ( _ VO 2peak ), aerobic power ( _ W peak ), and lactate threshold ( _ W LT ) were assessed before, and after both 5 and 9 weeks of training. ResultsAfter 9 weeks, all training groups increased leg press 1-RM (~24-28%) and total lean mass (~3-4%), with no clear differences between groups. Both concurrent groups elicited similar small-to-moderate improvements in all markers of aerobic fitness ( _ V O 2peak~8 -9%; _ W LT~1 6-20%; _ W peak~1 4-15%). RT improved CMJ displacement (mean ± SD, 5.3 ± 6.3%), velocity(2.2 ± 2.7%), force (absolute
Objective Sleep loss has emerged as a risk factor for the development of impaired glucose tolerance. The mechanisms underpinning this observation are unknown; however, both mitochondrial dysfunction and circadian misalignment have been proposed. Because exercise improves glucose tolerance and mitochondrial function, and alters circadian rhythms, we investigated whether exercise may counteract the effects induced by inadequate sleep. Methods To minimize between-group differences of baseline characteristics, 24 healthy young males were allocated into one of the three experimental groups: a Normal Sleep (NS) group (8 h time in bed (TIB) per night, for five nights), a Sleep Restriction (SR) group (4 h TIB per night, for five nights), and a Sleep Restriction and Exercise group (SR+EX) (4 h TIB per night, for five nights and three high-intensity interval exercise (HIIE) sessions). Glucose tolerance, mitochondrial respiratory function, sarcoplasmic protein synthesis (SarcPS), and diurnal measures of peripheral skin temperature were assessed pre- and post-intervention. Results We report that the SR group had reduced glucose tolerance post-intervention (mean change ± SD, P value, SR glucose AUC: 149 ± 115 A.U., P = 0.002), which was also associated with reductions in mitochondrial respiratory function (SR: -15.9 ± 12.4 pmol O 2 .s −1 .mg −1 , P = 0.001), a lower rate of SarcPS (FSR%/day SR: 1.11 ± 0.25%, P < 0.001), and reduced amplitude of diurnal rhythms. These effects were not observed when incorporating three sessions of HIIE during this period (SR+EX: glucose AUC 67 ± 57, P = 0.239, mitochondrial respiratory function: 0.6 ± 11.8 pmol O 2 .s −1 .mg −1 , P = 0.997, and SarcPS (FSR%/day): 1.77 ± 0.22%, P = 0.971). Conclusions A five-night period of sleep restriction leads to reductions in mitochondrial respiratory function, SarcPS, and amplitude of skin temperature diurnal rhythms, with a concurrent reduction in glucose tolerance. We provide novel data demonstrating that these same detrimental effects are not observed when HIIE is performed during the period of sleep restriction. These data therefore provide evidence in support of the use of HIIE as an intervention to mitigate the detrimental physiological effects of sleep loss.
We aimed to test the hypothesis that self-selecting fluid intake but maintaining high exogenous CHO availability (60 g/h) does not compromise half-marathon performance. 15 participants completed 3 half-marathons while drinking a 6% CHO solution to guidelines (DRINK) or a non-caloric solution in self-selected volumes when consuming 3×glucose (20 g) gels (G-GEL) or glucose-fructose (13 g glucose+7 g fructose) gels (GF-GEL) per hour. Fluid intake (DRINK: 1 557±182, G-GEL: 473±234, GF-GEL: 404±144 ml) and percent body mass loss (DRINK: - 0.8±0.9, G-GEL: - 2.0±0.6, GF-GEL: -2.3±1.1) were different (P<0.05) between conditions, though race time did not differ (DRINK: 110.6±14.4, G-GEL: 110.3±14.6, GF-GEL: 113.7±12.8 min). In G-GEL, there was a positive correlation (P<0.05) between body mass loss and race time. Plasma glucose was lower (P<0.05) in GF-GEL compared with other conditions, and total CHO oxidation (DRINK: 3.2±0.5, G-GEL: 3.0±0.4, GF-GEL: 2.6±0.4 g/min) was lower (P=0.06) in this trial. Self-selecting fluid intake but maintaining high CHO availability does not impair half-marathon performance. Additionally, consuming glucose-fructose mixtures in sub-optimal amounts reduces plasma glucose and total rates of CHO oxidation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.