The term “environmental flows” describes the quantities, quality, and patterns of water flows required to sustain freshwater and estuarine ecosystems and the ecosystem services they provide. Environmental flows may be achieved in a number of different ways, most of which are based on either (1) limiting alterations from the natural flow baseline to maintain biodiversity and ecological integrity or (2) designing flow regimes to achieve specific ecological and ecosystem service outcomes. We argue that the former practice is more applicable to natural and semi‐natural rivers where the primary objective and opportunity is ecological conservation. The latter “designer” approach is better suited to modified and managed rivers where return to natural conditions is no longer feasible and the objective is to maximize natural capital as well as support economic growth, recreation, or cultural history. This permits elements of ecosystem design and adaptation to environmental change. In a future characterized by altered climates and intensive regulation, where hybrid and novel aquatic ecosystems predominate, the designer approach may be the only feasible option. This conclusion stems from a lack of natural ecosystems from which to draw analogs and the need to support broader socioeconomic benefits and valuable configurations of natural and social capital.
Biodiversity assessment underpins our understanding of ecosystems and determines environmental management decisions on resource use and conservation priorities. Recently, a new discipline – environmental or ecological genomics (ecogenomics) – has emerged from major advances in sequencing technologies, such as pyrosequencing (a technique based on the detection of pyrophosphate during nucleotide incorporation), and enabled extraordinary progress in the way biodiversity can be assessed. Since 2008, numerous high‐impact microbial metagenomic sequencing studies, which have relied on both classical and next‐generation sequencing, have been published. As a result, many previously unrecognized taxa and biota have been identified, but none of these studies explored eukaryote diversity. Here, we illustrate the power of applying next‐generation pyrosequencing to identify and enumerate eukaryote species assemblages in the context of assessing the impacts of human activity on ecosystems.
We investigated the effects of wastewater treatment plant (WWTP) discharge on the ecology of bacterial communities in the sediment of a small, low-gradient stream in South Australia. The quantification of genes involved in the biogeochemical cycling of carbon and nitrogen was used to assess potential impacts on ecosystem functions. The effects of disturbance on bacterial community structure were assessed by PCRdenaturing gradient gel electrophoresis of 16S rRNA genes, and clone library analysis was used to phylogenetically characterize significant shifts. Significant (P < 0.05) shifts in bacterial community structures were associated with alteration of the sediment's physicochemical properties, particularly nutrient loading from the WWTP discharge. The effects were greatest at the sampling location 400 m downstream of the outfall where the stream flow is reduced. This highly affected stretch of sediment contained representatives of the gammaproteobacteria that were absent from less-disturbed sites, including Oceanospirillales and Methylococcaceae. 16S rRNA gene sequences from less-disturbed sites had representatives of the Caulobacteraceae, Sphingomonadaceae, and Nitrospirae which were not represented in samples from disturbed sediment. The diversity was lowest at the reference site; it increased with proximity to the WWTP outfall and declined toward highly disturbed (400 m downstream) sites (P < 0.05). The potential for biological transformations of N varied significantly with the stream sediment location (P < 0.05). The abundance of amoA, narG, and nifH genes increased with the distance downstream of the outfall. These processes are driven by N and C availability, as well as redox conditions. Together these data suggest cause and effect between nutrient loading into the creek, shift in bacterial communities through habitat change, and alteration of capacity for biogeochemical cycling of N.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.