Candida albicans surface-attached biofilms such as those formed on intravenous catheters with direct access to the bloodstream often serve as a nidus for continuous release of cells capable of initiating new infectious foci. We previously reported that cells dispersed from a biofilm are yeast cells that originate from the top-most hyphal layers of the biofilm. Compared to their planktonic counterparts, these biofilm dispersal yeast cells displayed enhanced virulence-associated characteristics and drug resistance. However, little is known about their molecular properties. To address that issue, in this study we aimed to define the molecular characteristics of these biofilm dispersal cells. We found that the inducer of dispersal, PES1, genetically interacts with the repressor of filamentation, NRG1, in a manner consistent with the definition of dispersed cells as yeast cells. Further, using a flow biofilm model, we performed comprehensive comparative RNA sequencing on freshly dispersed cells in order to identify unique transcriptomic characteristics. Gene expression analysis demonstrated that dispersed cells largely inherit a biofilm-like mRNA profile. Strikingly, however, dispersed cells seemed transcriptionally reprogrammed to acquire nutrients such as zinc and amino acids and to metabolize alternative carbon sources, while their biofilm-associated parent cells did not induce the same high-affinity transporters or express gluconeogenetic genes, despite exposure to the same nutritional signals. Collectively, the findings from this study characterize cell dispersal as an intrinsic step of biofilm development which generates propagules more adept at colonizing distant host sites. This developmental step anticipates the need for virulence-associated gene expression before the cells experience the associated external signals.
Calcium/calmodulin-dependent protein kinase II (CaMKII) plays a central role in Ca2+ signaling throughout the body. In the hippocampus, CaMKII is required for learning and memory. Vertebrate genomes encode four CaMKII homologs: CaMKIIα, CaMKIIβ, CaMKIIγ, and CaMKIIδ. All CaMKIIs consist of a kinase domain, a regulatory segment, a variable linker region, and a hub domain, which is responsible for oligomerization. The four proteins differ primarily in linker length and composition because of extensive alternative splicing. Here, we report the heterogeneity of CaMKII transcripts in three complex samples of human hippocampus using deep sequencing. We showed that hippocampal cells contain a diverse collection of over 70 CaMKII transcripts from all four CaMKII-encoding genes. We characterized the Ca2+/CaM sensitivity of hippocampal CaMKII variants spanning a broad range of linker lengths and compositions. The effect of the variable linker on Ca2+/CaM sensitivity depended on the kinase and hub domains. Moreover, we revealed a previously uncharacterized role for the hub domain as an allosteric regulator of kinase activity, which may provide a pharmacological target for modulating CaMKII activity. Using small-angle x-ray scattering and single-particle cryo–electron microscopy (cryo-EM), we present evidence for extensive interactions between the kinase and the hub domains, even in the presence of a 30-residue linker. Together, these data suggest that Ca2+/CaM sensitivity in CaMKII is homolog dependent and includes substantial contributions from the hub domain. Our sequencing approach, combined with biochemistry, provides insights into understanding the complex pool of endogenous CaMKII splice variants.
One Sentence SummaryCaMKII is a well-conserved protein that is essential for learning and memory. When CaMKII is mutated in a mouse, this mouse has difficulty learning and remembering how to get through a maze. The hippocampus is the part of the brain required for memory. Here, we used a specific experiment to determine every type of CaMKII that is in a human hippocampus. We found 70 different types and then asked how these differences affect CaMKII function. These data provide evidence that an assembly domain of CaMKII plays an unexpected role regulating its activity.This new finding helps us better understand endogenous CaMKII in the brain and provides a new mechanism for modulating CaMKII activity. AbstractCa 2+ -calmodulin dependent protein kinase II (CaMKII) plays a central role in Ca 2+ signaling throughout the body. Specifically in the hippocampus, CaMKII is required for learning and memory. CaMKII is encoded by four highly conserved genes in vertebrates: α, β, γ, and δ. All CaMKIIs are comprised of a kinase domain, regulatory segment, variable linker region, and hub domain responsible for oligomerization. The four genes differ primarily in linker length and composition due to extensive alternative splicing. Here, we unambiguously report the heterogeneity of CaMKII transcripts in 3 complex samples of human hippocampus using Illumina sequencing. Our results show that hippocampal cells contain a diverse collection of 70CaMKII transcripts from all four CaMKII genes. We characterized the Ca 2+ /CaM sensitivity of hippocampal CaMKII variants spanning a broad range of linker lengths and compositions. We demonstrate that the effect of the variable linker on Ca 2+ /CaM sensitivity is conditional on kinase and hub domains. Moreover, we reveal a novel role for the hub domain as an allosteric regulator of kinase activity, which may provide a new pharmacological target for modulating CaMKII activity. Using small angle X-ray scattering and single-particle electron cryo-microscopy, we present evidence for extensive interaction between the kinase and the hub domain, even in the presence of a 30-residue linker. Taken together, we propose that Ca 2+ /CaM sensitivity in CaMKII is gene-dependent and includes significant contributions from the hub. Our sequencing approach combined with biochemistry provides new insights into understanding the complex pool of endogenous CaMKII.
Gene duplication facilitates functional diversification and provides greater phenotypic flexibility to an organism. Expanded gene families arise through repeated gene duplication but the extent of functional divergence that accompanies each paralogous gene is generally unexplored because of the difficulty in isolating the effects of single family members. The telomere-associated (TLO) gene family is a remarkable example of gene family expansion, with 14 members in the more pathogenic Candida albicans relative to two TLO genes in the closely-related species C. dubliniensis. TLO genes encode interchangeable Med2 subunits of the major transcriptional regulatory complex Mediator. To identify biological functions associated with each C. albicans TLO, expression of individual family members was regulated using a Tet-ON system and the strains were assessed across a range of phenotypes involved in growth and virulence traits. All TLOs affected multiple phenotypes and a single phenotype was often affected by multiple TLOs, including simple phenotypes such as cell aggregation and complex phenotypes such as virulence in a Galleria mellonella model of infection. No phenotype was regulated by all TLOs, suggesting neofunctionalization or subfunctionalization of ancestral properties among different family members. Importantly, regulation of three phenotypes could be mapped to individual polymorphic sites among the TLO genes, including an indel correlated with two phenotypes, growth in sucrose and macrophage killing. Different selective pressures have operated on the TLO sequence, with the 5’ conserved Med2 domain experiencing purifying selection and the gene/clade-specific 3’ end undergoing extensive positive selection that may contribute to the impact of individual TLOs on phenotypic variability. Therefore, expansion of the TLO gene family has conferred unique regulatory properties to each paralog such that it influences a range of phenotypes. We posit that the genetic diversity associated with this expansion contributed to C. albicans success as a commensal and opportunistic pathogen.
Genome instability often leads to cell death but can also give rise to innovative genotypic and phenotypic variation through mutation and structural rearrangements. Repetitive sequences and chromatin architecture in particular are critical modulators of recombination and mutability. In Candida albicans, four major classes of repeats exist in the genome: telomeres, subtelomeres, the major repeat sequence (MRS), and the ribosomal DNA (rDNA) locus. Characterization of these loci has revealed how their structure contributes to recombination and either promotes or restricts sequence evolution. The mechanisms of recombination that give rise to genome instability are known for some of these regions, whereas others are generally unexplored. More recent work has revealed additional repetitive elements, including expanded gene families and centromeric repeats that facilitate recombination and genetic innovation. Together, the repeats facilitate C. albicans evolution through construction of novel genotypes that underlie C. albicans adaptive potential and promote persistence across its human host.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.