The diaphragm muscle (DIAm) is the primary inspiratory muscle in mammals and is active during ventilatory behaviors, but it is also involved in higher‐force behaviors such as those necessary for clearing the airway. Our laboratory has previously reported DIAm sarcopenia in rats and mice characterized by DIAm atrophy and a reduction in maximum specific force at 24 months of age. In Fischer 344 rats, these studies were limited to male animals, although in other studies, we noted a more rapid increase in body mass from 6 to 24 months of age in females (~140%) compared to males (~110%). This difference in body weight gain suggests a possible sex difference in the manifestation of sarcopenia. In mice, we previously measured transdiaphragmatic pressure (Pdi) to evaluate in vivo DIAm force generation across a range of motor behaviors, but found no evidence of sex‐related differences. The purpose of this study in Fischer 344 rats was to evaluate if there are sex‐related differences in DIAm sarcopenia, and if such differences translate to a functional impact on Pdi generation across motor behaviors and maximal Pdi (Pdimax) elicited by bilateral phrenic nerve stimulation. In both males and females, DIAm sarcopenia was apparent in 24‐month‐old rats with a ~30% reduction in both maximum specific force and the cross‐sectional area of type IIx and/or IIb fibers. Importantly, in both males and females, Pdi generated during ventilatory behaviors was unimpaired by sarcopenia, even during more forceful ventilatory efforts induced via airway occlusion. Although ventilatory behaviors were preserved with aging, there was a ~20% reduction in Pdimax, which likely impairs the ability of the DIAm to generate higher‐force expulsive airway clearance behaviors necessary to maintain airway patency.
Breathing occurs without thought but is controlled by a complex neural network with a final output of phrenic motor neurons activating diaphragm muscle fibers (i.e., motor units). This review considers diaphragm motor unit organization and how they are controlled during breathing as well as during expulsive behaviors.
Symmorphosis is a concept of economy of biological design, whereby structural properties are matched to functional demands. According to symmorphosis, biological structures are never over designed to exceed functional demands. Based on this concept, the evolution of the diaphragm muscle (DIAm) in mammals is a tale of two structures, a membrane that separates and partitions the primitive coelomic cavity into separate abdominal and thoracic cavities and a muscle that serves as a pump to generate intra-abdominal (P ab ) and intra-thoracic (P th ) pressures. The DIAm partition evolved in reptiles from folds of the pleural and peritoneal membranes that was driven by the biological advantage of separating organs in the larger coelomic cavity into separate thoracic and abdominal cavities, especially with the evolution of aspiration breathing. The DIAm pump evolved from the advantage afforded by more effectively generation of both a negative P th for ventilation of the lungs and a positive P ab for venous return of blood to the heart and expulsive behaviors such as airway clearance, defecation, micturition, and child birth. Didactic SynopsisThe DIAm separates abdominal and thoracic cavities; thus, it is a partition, and its evolution reflects that important role in isolating organs into separate thoracic and abdominal cavities. However, the DIAm is also a muscle, and is most often described as the principal pump muscle of inspiration. However, the DIAm also serves as a pump for generating both negative P th and positive P ab in other motor behaviors. Accordingly, the evolution of the DIAm is more complex and should be considered in the context of its dual physiological roles as a partition and muscular pump. In considering DIAm evolution, we adopt the guiding concept of symmorphosis or economy of design, where biological structures are not over designed for their functional roles. Thus, this is a tale of the evolution of two diaphragms, a partition and a muscular pump that separates thoracic and abdominal cavities but also affects generation of P th and P ab .
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.