Please refer to published version for the most recent bibliographic citation information. If a published version is known of, the repository item page linked to above, will contain details on accessing it.
Dispatching rules are often used for scheduling in semiconductor manufacturing due to the complexity and stochasticity of the problem. In the past, simulation-based Genetic Programming has been shown to be a powerful tool to automate the time-consuming and expensive process of designing such rules. However, the scheduling problems considered were usually only constrained by the capacity of the machines. In this paper, we extend this idea to dual-constrained flow shop scheduling, with machines and operators for loading and unloading to be scheduled simultaneously. We show empirically on a small test problem with parallel workstations, re-entrant flows and dynamic stochastic job arrival that the approach is able to generate dispatching rules that perform significantly better than benchmark rules from the literature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.