Abstract-The feasibility of centimeter-accurate carrier-phase differential GNSS (CDGNSS) positioning using a smartphone's internal GNSS antenna and GNSS chip is investigated. Precise positioning on a mass-market platform would significantly influence the world economy, ushering in a host of consumer-focused applications that have so far been hampered by the several-meter-level errors in traditional GNSS positioning. Previous work has shown that GNSS signals received through a mass-market smartphone's GNSS antenna can be processed to yield a centimeter-accurate CDGNSS position solution, but this earlier work processed all GNSS signals externally to the smartphone. The question remains whether a smartphone's internal oscillator and GNSS chip can produce observables of sufficient quality to support centimeteraccurate carrier-phase-based positioning. This paper answers the question by accessing and processing the raw code-and carrierphase observables produced by a mass-market smartphone GNSS chip-observables that have heretofore been unavailable to the research community. The phone's carrier phase measurements are shown to suffer from five anomalies compared to those from a survey-grade GNSS receiver, four of which are readily fixed in post-processing. The remaining anomaly, an error in the phase measurement that grows approximately linearly with time, currently prevents the phone's phase measurements from satisfying the conditions for CDGNSS positioning. But the phone's measurements seem otherwise fully capable of supporting cmaccurate carrier-phase differential GNSS positioning. A separate analysis of a smartphone's GNSS signal strength dependency on azimuth and elevation reveals that multipath-induced deep fading and large phase errors remain a significant challenge for centimeter-accurate smartphone positioning.
Observation of terrestrial GNSS interference (jamming and spoofing) from low Earth orbit (LEO) is a uniquely effective technique for characterizing the scope, strength, and structure of interference and for estimating transmitter locations. Such details are useful for situational awareness, interference deterrence, and the development of interference‐hardened GNSS receivers. This paper presents the results of a three‐year study of global interference, with emphasis on a particularly powerful interference source active in Syria since 2017. It then explores the implications of such interference for GNSS receiver operation and design.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.