Oil-in-water emulsions stabilized by graphene oxide (GO) can be flocculated by either an increase or a decrease in pH. At highly acidic pH, fully reversible flocculation of emulsion droplets can be achieved, whereas when adjusted to high pH, the flocculation is irreversible, which we interpret as a permanent chemical change in the GO. We correlate the effectiveness of GO as a stabilizer to its aqueous aggregation state and explore the effects of the GO surface charge in determining emulsion properties. By directly measuring the interaction forces between two emulsion droplets coated in GO using the atomic force microscope, we demonstrate the basis for the pH-dependent flocculation behavior. It is shown that interfacial charge of the GO and oil−water interface is the overriding drive for the exceptional stability of acidic GO emulsions.
We report the light-induced structural evolution of photoswitchable carbohydrate-based surfactant micelles using time-resolved small-angle neutron scattering (TR-SANS), monitoring the structural changes in micellisation in situ over time and demonstrating for the first time the course and implications of this process.
Solutions of extended, flexible cylindrical micelles, often known as wormlike micelles, have great potential as the base for viscoelastic complex fluids in oil recovery, drilling, and lubrication. Here, we study the morphology and nanostructural characteristics of a model wormlike micellar fluid formed from erucyl amidopropyl betaine (EAPB) in water as a function of a diverse range of additives relevant to complex fluid formulation. The wormlike micellar dispersions are extremely oleo-responsive, with even as little as 0.1% hydrocarbon oil causing a significant disruption of the network and a decrease in zero-shear viscosity of around 100-fold. Simple salts have little effect on the local structure of the wormlike micelles but result in the formation of fractal networks at larger length scales, whereas even tiny amounts of small organic species such as phenol can cause unexpected phase transitions. When forming mixtures with other surfactants, a vast array of self-assembled structures are formed, from spheres to ellipsoids, lamellae, and vesicles, offering the ultimate sensitivity in designing formulations with specific nanostructural characteristics.
The parallel synthesis and properties of a library of photoswitchable surfactants comprising a hydrophobic butylazobenzene tail-group and a hydrophilic carbohydrate head-group, including the first surfactants to exhibit dual photo- and pH-responsive behavior, is reported. This new generation of surfactants shows varying micelle morphologies, photocontrollable surface tension, and pH-induced aggregation and adsorption.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.