Summary 1.Seeding is an important management tool in aridland restoration, but seeded species often fail to establish. Previous research has largely focused on the technical aspects of seeding with little effort directed at identifying demographic processes driving recruitment failures. 2. In tilled plots, in each of 3 years, we estimated life stage transition probabilities for three species commonly used in sage steppe restoration. We also took similar measurements on seed sown by managers following four major fires. 3. Point estimates and associated Bayesian confidence intervals demonstrated germination probabilities that were consistently high, averaging 0AE72. However, estimates suggest only 17 and 7% of the germinated seeds emerged in the tilled plots and fire sites, respectively. Following emergence, survival across the seedling, juvenile and adult transitions averaged 0AE72. This suggests the transition from a germinated seed to an emerged seedling was the major bottleneck in recruitment. Although most individuals died during emergence, this was not always the principal source of variation in recruitment across sites. 4. Synthesis and applications. Processes occurring after emergence, such as mortality during spring and summer drought, may contribute to site-to-site variation in recruitment but are unlikely to be the main causes of restoration failures. Instead, recruitment may largely be determined by processes occurring during emergence, such as freezing and thawing of the seedbed, development of physical soil crusts and pathogen attack on germinated seeds. Using tools such as seed coatings and soil amendments to manage processes inhibiting emergence and developing seed mixes with higher emergence probabilities are likely to greatly improve restoration outcomes in the sage steppe and similar aridland systems.
Ecosystem managers face a difficult decision when managing invasive species. If they use aggressive practices to reduce invader abundances, they will likely reduce invaders' competitive impacts on natives. But it is often difficult or impossible to reduce invaders without damaging natives. So a critical question becomes: Which is worse for native biota, invaders or things done to control invaders? We attempted to answer this question for a common scenario. We studied several grassland natives exhibiting long-term coexistence with an invader and asked how aggressive management (herbicide use) affected the natives. Whether or not grazing was excluded, one-time herbicide use made two native forbs exceedingly rare for our entire 16-year study period. Herbicide also made several other native forbs rare, but only when grazing was excluded, and there is evidence that the dominant invader became more abundant in response to the decreases in native-forb abundances. Throughout the world, terrestrial and aquatic ecosystems are receiving herbicide applications for exotic-species control. Some of the applications are doubtless warranted because they target small invader patches or larger areas with virtually no remaining natives. However, other herbicide applications occur where large native populations occur, and our data suggest that these applications can be ill advised. Our cautionary tale is told using an herbicide-treated grassland, but our results should be considered wherever invasive-species management damages native species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.