The short-rib polydactyly (SRP) syndromes are a heterogeneous group of perinatal lethal skeletal disorders with polydactyly and multisystem organ abnormalities. Homozygosity by descent mapping in a consanguineous SRP family identified a genomic region that contained DYNC2H1, a cytoplasmic dynein involved in retrograde transport in the cilium. Affected individuals in the family were homozygous for an exon 12 missense mutation that predicted the amino acid substitution R587C. Compound heterozygosity for one missense and one null mutation was identified in two additional nonconsanguineous SRP families. Cultured chondrocytes from affected individuals showed morphologically abnormal, shortened cilia. In addition, the chondrocytes showed abnormal cytoskeletal microtubule architecture, implicating an altered microtubule network as part of the disease process. These findings establish SRP as a cilia disorder and demonstrate that DYNC2H1 is essential for skeletogenesis and growth.
The human NBC1 gene encodes two electrogenic sodium-bicarbonate cotransport proteins, pNBC1 and kNBC1, which are candidate proteins for mediating electrogenic sodium-bicarbonate cotransport in ocular cells. Mutations in the coding region of the human NBC1 gene in exons common to both pNBC1 and kNBC1 result in a syndrome with a severe ocular and renal phenotype (blindness, band keratopathy, glaucoma, cataracts, and proximal renal tubular acidosis). In the present study, we determined the pattern of electrogenic sodium-bicarbonate cotransporter protein expression in rat eye. For this purpose, pNBC1- and kNBC1-specific antibodies were generated and used to detect these NBC1 protein variants by immunoblotting and immunocytochemistry. pNBC1 is expressed in cornea, conjunctiva, lens, ciliary body, and retina, whereas the expression of kNBC1 is restricted to the conjunctiva. These results provide the first evidence for extrarenal kNBC1 protein expression. The data in this study will serve as a basis for understanding the molecular mechanisms responsible for abnormalities in ocular electrogenic sodium-bicarbonate cotransport in patients with mutations in the NBC1 gene.
Abstract. Chinese hamster ovary cell mutants resistant to the microtubule stabilizing drug taxol were isolated in a single step. Of these 139 drug-resistant mutants, 59 exhibit an absolute requirement for taxol for normal growth and division, 13 have a partial requirement, and 69 grow normally without the drug. Twodimensional gel analysis of whole cell proteins reveal "extra" spots representing altered tubulins in 13 of the mutants. Six of these have an altered a-tubulin and seven have an altered ~-tubulin. Cells with an absolute dependence on taxol become large and multinucleated when deprived of the drug. In contrast, partially dependent cells exhibit some multinucleation, but most cells appear normal. In one mutant that has an absolute dependence on taxol, the cells appear to die more quickly and their nuclei do not increase in size or number.As previously found for another taxol-dependent mutant (Cabral, F., 1983, J. Cell. Biol., 97:22-29), the taxol dependence of the mutants described in this paper behaves recessively in somatic cell hybrids, and the cells are more susceptible to being killed by colcemid than are the wild-type parental cells. When compared with wild-type cells, taxol-dependent mutants have normal arrays of cytoplasmic microtubules but form much smaller mitotic spindles in the presence of taxol. When deprived of the drug, however, these mutants cannot complete assembly of the mitotic spindle apparatus, as judged by tubulin immunofluorescence. Thus, the defects leading to taxol dependence in these mutants with defined alterations in ,-and ~-tubulin appear to result from the cell's inability to form a functional mitotic spindle. Reversion analysis indicates that the properties of at least one atubulin mutant are conferred by the altered tubulin seen on two-dimensional gels.
␣B-Crystallin is a developmentally regulated small heat shock protein known for its binding to a variety of denatured polypeptides and suppression of protein aggregation in vitro. Elevated levels of ␣B-crystallin are known to be associated with a number of neurodegenerative pathologies such as Alzheimer disease and multiple sclerosis. Mutations in ␣B-crystallin gene have been linked to desminrelated cardiomyopathy and cataractogenesis. The physiological function of this protein, however, is unknown. Using discontinuous sucrose density gradient fractionation of post-nuclear supernatants, prepared from rat tissues and human glioblastoma cell line U373MG, we have identified discrete membrane-bound fractions of ␣B-crystallin, which co-sediment with the Golgi matrix protein, GM130. Confocal microscopy reveals co-localization of ␣B-crystallin with BODIPY TR ceramide and the Golgi matrix protein, GM130, in the perinuclear Golgi in human glioblastoma U373MG cells. Examination of synchronized cultures indicated that ␣B-crystallin follows disassembly of the Golgi at prometaphase and its reassembly at the completion of cytokinesis, suggesting that this small heat shock protein, with its chaperone-like activity, may have an important role in the Golgi reorganization during cell division.
Abstract. Isolated basal body complexes from the unicellular alga, Chlamydomonas reinhardtii were found to contain a low molecular mass acidic polypeptide, distinct from calmodulin, but with biochemical features in common with members of the calmodulin family of calcium-binding proteins. These common characteristics included a relative low molecular mass of 20 kD, an experimentally determined acidic pI of 5.3, an altered electrophoretic mobility in SDS-polyacrylamide gels in the presence of added calcium, and a calcium-dependent binding to the hydrophobic ligand phenyl-Sepharose which allowed its purification by affinity chromatography. The relatedness of the basal body-associated 20-kD calcium-binding protein (CaBP) to calmodulin was confirmed by amino acid compositional analysis and partial peptide sequencing of the isolated protein. A rabbit antibody specific for the 20-kD CaBP was raised and used to determine by indirect immunofluorescence the cellular localization of the protein in Chlamydomonas cells. In interphase cells the antibody stained intensely the region between the paired basal bodies, two fibers extending between the basal bodies and the underlying nucleus, and an array of longitudinal filaments surrounding the nucleus. The two basal body-nuclear connecting fibers were identified in thin-section electron micrographs to be narrow striated fiber roots. In mitotic cells the 20-kD CaBP was specifically associated with the poles of the mitotic spindle at the sites of the duplicated basal body complexes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.