Patterns of male reproductive allocation provide insight into life-history characteristics. The trade-offs associated with resource and female group defence are well-defined. However, less is understood about trade-offs in species that practise scramble-competition polygyny, where successful strategies may favour competitive mate-searching rather than contest competition and fighting. White-tailed deer (Odocoileus virginianus) practise scramble-competition polygyny where solitary males search for and assess receptivity of females scattered across the landscape. Physically mature males are expected to do most of the breeding because of the high energetic costs of reproduction and high social status. However, young males may collectively sire one-third of offspring. To gain a better understanding of trade-offs associated with scramble-competition polygyny, we quantified metrics associated with reproductive effort and success. We quantified changes in body mass of harvested males, energetic costs of locomotion based on movements of GPS radiocollared males and timing of reproduction via temporal genetic parentage assignments. Young males (1.5 and 2.5 years old) sired offspring, but their mating success was mainly limited to peak rut, when most females were in oestrus. Furthermore, multiple paternity was common, indicating opportunistic reproduction. Reproductive effort, indexed by body mass loss, was highest in prime-age males (5.5-6.5 years old). Surprisingly, young and postprime males also exhibited significant body mass loss, indicative of investment in reproductive effort. Movement rates increased twofold to fourfold during rut as a function of mate search activities, but cost of locomotion would cause only about one-third of observed body mass loss. Because males are capital breeders, we infer most of body mass loss is due to reduced foraging. In scramble-competition polygyny, the repeated location of potential mates and assessment of their oestrous status appear to be important constituents of male mating strategies. Therefore, mating success may be influenced by time management and spatial memory, and not based solely on social dominance. Thus, reproductive effort should be greater for individuals capable of reducing time foraging. For those that cannot, opportunistic mating opportunities may arise when operative adult sex ratios are low. Our analyses reveal valuable insight into the trade-offs associated with scramble-competition polygyny.
White-tailed deer are a culturally and economically important game species in North America, especially in South Texas. The recent discovery of chronic wasting disease (CWD) in captive deer facilities in Texas has increased concern about the potential emergence of CWD in free-ranging deer. The concern is exacerbated because much of the South Texas region is a semi-arid environment with variable rainfall, where precipitation is strongly correlated with fawn recruitment. Further, the marginally productive rangelands, in combination with erratic fawn recruitment, results in populations that are frequently density-independent, and thus sensitive to additive mortality. It is unknown how a deer population in semi-arid regions would respond to the presence of CWD. We used long-term empirical datasets from a lightly harvested (2% annual harvest) population in conjunction with 3 prevalence growth rates from CWD afflicted areas (0.26%, 0.83%, and 2.3% increases per year) via a multi-stage partially deterministic model to simulate a deer population for 25 years under four scenarios: 1) without CWD and without harvest, 2) with CWD and without harvest, 3) with CWD and male harvest only, and 4) with CWD and harvest of both sexes. The modeled populations without CWD and without harvest averaged a 1.43% annual increase over 25 years; incorporation of 2% annual harvest of both sexes resulted in a stable population. The model with slowest CWD prevalence rate growth (0.26% annually) without harvest resulted in stable populations but the addition of 1% harvest resulted in population declines. Further, the male age structure in CWD models became skewed to younger age classes. We incorporated fawn:doe ratios from three CWD afflicted areas in Wisconsin and Wyoming into the model with 0.26% annual increase in prevalence and populations did not begin to decline until ~10%, ~16%, and ~26% of deer were harvested annually. Deer populations in variable environments rely on high adult survivorship to buffer the low and erratic fawn recruitment rates. The increase in additive mortality rates for adults via CWD negatively impacted simulated population trends to the extent that hunter opportunity would be greatly reduced. Our results improve understanding of the potential influences of CWD on deer populations in semi-arid environments with implications for deer managers, disease ecologists, and policy makers.
Pereda-Solís, M. (2017). La abundancia de aves acuáticas (Anseriformes) en relación con la complejidad del paisaje en un sitio Ramsar del norte de México. Acta Zoológica Mexicana (n.s.), 33(2), 199-210. RESUMEN. La abundancia de aves acuáticas (Anseriformes) en re-lación con la complejidad del paisaje en un sitio Ramsar del norte de México. Se evaluó la respuesta de las poblaciones de aves acuáticas (Anseriformes) a la estructura del paisaje en un sitio Ramsar en el estado de Durango, México. Se delimitaron los cuerpos de agua pre-sentes durante el invierno mediante el cálculo del Índice Diferencial Normalizado de Vegetación (NDVI) en imágenes LANDSAT, cu-briendo un periodo de 35 años (1979-2014). El área de estudio se clasificó en ambientes acuáticos y terrestres. Se calcularon índices de fragmentación como descriptores de la complejidad del paisaje, creada por la abundancia y distribución de los cuerpos de agua. La informa-ción poblacional de aves acuáticas se obtuvo de los conteos invernales realizados entre 1979 y 2014 por el U.S. Fish and Wildlife Service (USFWS) y por la Secretaría de Medio Ambiente y Recursos Natu-rales (SEMARNAT). La superficie ocupada por los cuerpos de agua mostró una marcada oscilación de 4,000 a 29,000 ha. La forma, la extensión y el nivel de aislamiento de los cuerpos de agua, fueron los factores más importantes para las aves acuáticas. La complejidad en la forma de los humedales tuvo un efecto positivo sobre la presencia de aves, mientras que las grandes extensiones de agua, se relacionan con una reducción en el tamaño de las poblaciones. Los resultados sugie-ren que esta región puede resultar más atractiva para los gansos cuando Chacón, J.E., Pompa-García, M., Treviño-Garza, E., Martínez-Guerrero, J., Aguirre-Salado, C., & Pereda-Solís, M. (2017). Waterfowl abundance in relation to landscape complexity in a Ramsar site of Northern Mexico. Acta Zoológica Mexicana (n.s.), 33(2), 199-210. ABSTRACT. The response of waterfowl (Anseriformes) populations to the landscape structure was evaluated in a Ramsar site in the state of Durango, Mexico. Water bodies present during the winter were delimited using the calculation of the normalized differential vegetation index (NDVI) in LANDSAT images, covering a period of 35 years (1979-2014). The study area was categorized into aquatic and terrestrial environments. Indices of fragmentation were calculated as de-scriptors of landscape complexity, represented by the abundance and distribution of the water bodies. Waterfowl populational information was obtained from winter counts conducted between 1979 and 2014 by the U.S. Fish and Wildlife Service (USFWS) and by the Mexican Ministry of Environment and Natural Resources (SEMARNAT, by its Spanish acronym). The area occupied by the water bodies presented a marked oscillation of 4,000 to 29,000 ha. The shape, area and isolation of the wetland landscape were the most important factors for the wa-terfowl. The shape complexity had a positive effect on the presences of birds, while large areas reduced the w...
Context The ability to accurately estimate age of animals is important for both research and management. The two methods for age estimation in ungulates are tooth replacement and wear (TRW) and cementum annuli (CA). Errors in estimated TRW ages are commonly attributed to environmental conditions; however, the influence of environmental variables on tooth wear has not been quantified. Further, the performance of CA in environments with weak seasonality has not been thoroughly evaluated. Aims The study had the following three goals: identify environmental and morphological factors that influenced estimated ages, quantify accuracy of TRW and CA, and develop TRW ageing criteria that minimise error. Methods We used data from harvested (n = 5117) and free-ranging, known-age white-tailed deer (n = 134) collected in southern Texas, USA, to quantify environmental and morphological influences on estimated TRW ages, and assess biases in both methods. Key results We observed substantial variation in age estimates for both TRW and CA. Soil, drought and supplemental nutrition had minor effects on tooth wear, insufficient to alter age estimates by ≥1 year. Body mass and antler size influenced age estimates for TRW only for extreme outliers. Both methods were biased and tended to under-estimate ages of adult deer, especially TRW. Wear on the first molar was most correlated with the known age (r2 = 0.78) and allowed biologists to correctly place known-age deer into age classes of 2, 3–5, and ≥6 years old 72%, 73% and 68% of the time, an improvement compared with the 79%, 48% and 28% accuracy from pooled TRW. Conclusions We observed substantial inter- and intra-individual variation in tooth-wear patterns that became more pronounced in older deer. Individual variation had a greater influence on TRW ages than did environmental covariates, whereas CA ages appeared unaffected by environment. Although variable, age estimates were ±1 year of the true age 87% and 93% of the time for TRW and CA respectively. Implications Managers, ecologists and epidemiologists often incorporate ages into population models. The high inter-individual variation in estimated ages, the tendency to underestimate ages of older deer, and the ageing method need to be considered.
Distance sampling during aerial surveys has been used extensively to estimate the density of many wildlife species. However, practical issues arise when using distance sampling during aerial surveys, such as obtaining accurate perpendicular distances. We assembled a computerized, electronic system to collect distance‐sampling data (e.g., transect length, detection location, and perpendicular distance) during aerial surveys. We tested the accuracy of the system in a controlled trial and a mock survey. We also evaluated the electronic system during field surveys of northern bobwhite (Colinus virginianus) conducted in the Rio Grande Plains and Rolling Plains ecoregions of Texas, USA, during December 2007–2008. For comparison, we evaluated the accuracy of visual estimation of distance during a mock survey. A strong linear relationship existed between estimated and actual distances for the controlled trial (r2 = 0.99) and mock survey (r2 = 0.98) using the electronic system. Perpendicular‐distance error (i.e., absolute difference between estimated distance and actual distance) for the electronic system was low during the controlled trial (1.4 ± 0.4 m; ${\bar {x}}$ ± SE) and mock survey (3.0 ± 0.5 m) but not during the visual estimation of distance (10 ± 1.5 m). Estimates of bobwhite density obtained using the electronic system exhibited reasonable precision for each ecoregion during both years (CV < 20%). Perpendicular‐distance error slightly increased with target distance (0.7‐m increase in error for every 10‐m increase in target distance). Overall, the electronic system appears to be a promising technique to estimate density of northern bobwhite and possibly other terrestrial species for which aerial‐based distance sampling is appropriate. © The Wildlife Society, 2012
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.