Receptor-interacting serine/threonine-protein kinase 1 (RIPK1) is recruited to the TNF receptor 1 to mediate proinflammatory signaling and to regulate TNF-induced cell death. RIPK1 deficiency results in postnatal lethality, but precisely why Ripk1 −/− mice die remains unclear. To identify the lineages and cell types that depend on RIPK1 for survival, we generated conditional Ripk1 mice. Tamoxifen administration to adult RosaCreER T2 Ripk1fl/fl mice results in lethality caused by cell death in the intestinal and hematopoietic lineages. Similarly, Ripk1 deletion in cells of the hematopoietic lineage stimulates proinflammatory cytokine and chemokine production and hematopoietic cell death, resulting in bone marrow failure. The cell death reflected cell-intrinsic survival roles for RIPK1 in hematopoietic stem and progenitor cells, because Ripk3−/− progenitors remain TNF sensitive in vitro and fail to repopulate irradiated mice. These genetic studies reveal that hematopoietic RIPK1 deficiency triggers both apoptotic and necroptotic death that is partially prevented by RIPK3 deficiency. Therefore, RIPK1 regulates hematopoiesis and prevents inflammation by suppressing RIPK3 activation.tumor necrosis factor | programmed necrosis | hematopoietic failure T he proinflammatory cytokine TNF stimulates receptorinteracting serine/threonine-protein kinase 1 (RIPK1) ubiquitination, NFκB and MAPK activation, and induction of apoptosis or necroptosis (1, 2). TNF signaling via TNF receptor 1 (TNFR1) is highly regulated and results in the recruitment of several adapter proteins including TNFR1-associated death domain (TRADD) protein, the E3 ubiquitin ligases cellular inhibitor of apoptosis protein-1 and -2 (cIAP1/2), and TNFRassociated factor 2 (TRAF2) or 5, and the serine threonine death domain-containing kinase RIPK1 (complex I) (1). We have demonstrated that the kinase activity of RIPK1 is not required for NFκB activation (3); rather, RIPK1 is modified by the addition of Lys63-linked and linear polyubiquitin chains (3-6). Polyubiquitinated RIPK1 then recruits NEMO/IκB kinase-γ (IKKγ) to mediate IKK activation and TAK1/TAB2/3 to mediate MAPK activation, resulting in antiapoptotic and proinflammatory gene expression (7,8). Deubiquitination of RIPK1 by cylindromatosis (CYLD) results in the formation of a cytosolic complex containing TRADD, Fas-associated death domain protein (FADD), caspase-8, and RIPK1 (complex IIa) (2). Caspase-8 cleaves and inactivates RIPK1 and CYLD and stimulates apoptosis (9-11). In the absence of caspase-8 or the presence of caspase inhibitors, TNF family members and potentially other ligands stimulate the kinase activity of RIPK1 to induce necroptosis (9, 11-16). RIPK1 also is recruited to the Toll-like receptor adapter TRIF via the Rip homotypic interaction motif (RHIM) to mediate NFκB activation (17) and, under conditions of caspase-8 inhibition, initiates necroptosis (14, 16). Necrostatin-1 (Nec-1), an allosteric RIPK1 inhibitor, inhibits necroptosis induced by TNF or the TLR3 ligand poly I:C and abolish...
Bfl-1/A1 is generally recognized as a Bcl-2-related inhibitor of apoptosis. We show that Bfl-1 undergoes constitutive ubiquitin/proteasome-mediated turnover. Moreover, while Bfl-1 suppresses apoptosis induced by staurosporine or cytokine withdrawal, it is proapoptotic in response to tumor necrosis factor (TNF) receptor activation in FL5.12 pro-B cells. Its anti-versus proapoptotic effect is regulated by two proteolytic events: (1) its constitutive proteasome-mediated turnover and (2) its TNF/cycloheximide (CHX)-induced cleavage by l-calpain, or a calpain-like activity, coincident with acquisition of a proapoptotic phenotype. In vitro studies suggest that calpain-mediated cleavage of Bfl-1 occurs between its Bcl-2 homology (BH)4 and BH3 domains. This would be consistent with the generation of a proapoptotic Bax-like BH1-3 molecule. Overall, our studies uncovered two new regulatory mechanisms that play a decisive role in determining Bfl-1's prosurvival versus prodeath activities. These findings might provide important clues to counteract chemoresistance in tumor cells that highly express Bfl-1.
IntroductionNOTCH activation has been recently implicated in human breast cancers, associated with a poor prognosis, and tumor-initiating cells are hypothesized to mediate resistance to treatment and disease relapse. To address the role of NOTCH1 in mammary gland development, transformation, and mammary tumor-initiating cell activity, we developed a doxycycline-regulated mouse model of NOTCH1-mediated mammary transformation.MethodsMammary gland development was analyzed by using whole-mount analysis and by flow cytometry in nulliparous transgenic mice maintained in the presence/absence of doxycycline (or intracellular NOTCH1). Mammary tumors were examined histologically and immunophenotyped by staining with antibodies followed by flow cytometry. Tumors were transplanted into mammary fat pads under limiting dilution conditions, and tumor-initiating cell frequency was calculated. Mammary tumor cells were also plated in vitro in a tumorsphere assay in the presence/absence of doxycycline. RNA was isolated from mammary tumor cell lines cultured in the presence/absence of doxycycline and used for gene-expression profiling with Affymetrix mouse arrays. NOTCH1-regulated genes were identified and validated by using quantitative real-time polymerase chain reaction (PCR). Mammary tumor-bearing mice were treated with doxycycline to suppress NOTCH1 expression, and disease recurrence was monitored.ResultsSimilar to published studies, we show that constitutive expression of human intracellular NOTCH1 in the developing mouse mammary gland inhibits side branching and promotes luminal cell fate. These mice develop mammary adenocarcinomas that express cytokeratin (CK) 8/18. In vivo limiting-dilution analyses revealed that these mammary tumors exhibit functional heterogeneity and harbor a rare (1/2,978) mammary tumor-initiating cell population. With this dox-regulated NOTCH1 mammary tumor model, we demonstrate that NOTCH1 inhibition results in mammary tumor regression in vivo and prevents disease recurrence in four of six tumors tested. Consistent with the in vivo data, NOTCH1 inhibition reduces mammary tumorsphere activity in vitro. We also identify the embryonic stem cell transcription factor Nanog as a novel NOTCH1-regulated gene in tumorspheres and in mouse and human breast cancer cell lines.ConclusionsThese data indicate that NOTCH1 inhibition results in mammary tumor regression in vivo and interferes with disease recurrence. We demonstrate that NOTCH1-transformed mouse mammary tumors harbor a rare mammary tumor-initiating population and that NOTCH1 contributes to mammary tumor-initiating activity. This work raises the possibility that NOTCH therapeutics may target mammary tumor-initiating cells in certain human breast cancer subtypes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.