Place-based initiatives often use resident surveys to inform and evaluate interventions. Sampling based on well-defined sampling frames is important but challenging for initiatives that target subpopulations. Databases that enumerate total population counts can produce overinclusive sampling frames, resulting in costly outreach to ineligible participants. Quantifying eligibility before sampling using machine learning algorithms can improve efficiency and reduce costs. We developed a model to improve sampling for the West Philly Promise Neighborhood’s biennial population-representative survey of households with children within a geographic footprint. This study proposes a method to estimate probability of study eligibility by building a well-calibrated predictive model using existing administrative data sources. Six machine-learning models were evaluated; logistic regression provided the best balance of accuracy and understandable probabilities. This approach can be a blueprint for other population-based studies whose sampling frames cannot be well defined using traditional sources.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.