Highly fluorinated, hyperbranched polymers were synthesized from the polycondensation of AB 2 monomers, 3,5-bis[(pentafluorobenzyl)oxy]benzyl alcohol and 3,5-bis[(pentafluorobenzyl)-oxy]phenol with potassium carbonate base, and 18-crown-6 phase transfer agent in a variety of polar aprotic solvents. The regioselectivity of the polymerization was optimized and was found to be temperature dependent. The new polymerization technique produced higher molecular weight polymer using safer conditions than earlier methods. The resulting optimization was used to control substitution of oxygen-bearing nucleophiles along nonactivated fluoroaryl systems in high yield. Water was found to induce side reactions that generate a highly conjugated fluoroaryl phenol with lowered reactivity. The removal of a methylene spacer in the polymer backbone of the hyperbranched polymer produced a polymer with greater thermal stability. The reaction conditions for polymerization were found to be general for nucleophilebearing perfluorinated systems. V C 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014, 52,[985][986][987][988][989][990][991][992][993][994]
In this research, membrane formation with hyperbranched perfluorinated polymers (HBFP) was investigated. To create a tough membrane, HBFP was blended and crosslinked with a tougher linear polymer. Blending only or crosslinking only was not sufficient to create a tough membrane, but combining blending with crosslinking was successful. Miscibility, phase separation, and thermal and mechanical properties were evaluated for a variety of systems. By using a toughening linear polymer with lower polarity, reduced phase separation and improved mechanical properties were seen. Overall, imidazolecontaining HBFPs produced the clearest and toughest blends. These new hyperbranched ionomers and copolymers are strong candidates for future use in anhydrous proton exchange membranes.Additional supporting information may be found in the online version of this article.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.