Background: Injuries to the anterior cruciate ligament and posterior cruciate ligament are common, and often are treated with reconstruction. Limited quantitative data are available describing material properties of grafts used for reconstructions such as the bone-patellar tendon-bone (BPTB), hamstring tendon (HS), and quadriceps tendon (QT). The purpose of this study was to quantify and compare microstructural and mechanical properties of BPTB, HS, and QT grafts. Methods: Forty specimens (13 BPTB, 13 HS, and 14 QT grafts) from 24 donors were used. Specimens were subjected to preconditioning, stress relaxation, and ramp to failure. Mechanical parameters were calculated for each sample, and polarization imaging was used to evaluate the direction and strength of collagen fiber alignment during testing. Results: QT had the largest modulus values, and HS had the smallest. BPTB exhibited the least disperse collagen organization, while HS were the least strongly aligned. Microstructural properties showed more strongly aligned collagen with increasing load for all grafts. All tissues showed stress relaxation and subtle microstructural changes during the hold period. Conclusions: The mechanical and microstructural properties differed significantly among BPTB, HS, and QT grafts. QT exhibited the largest moduli and greatest strength of collagen alignment, while HS had the smallest moduli and least strongly aligned collagen. Clinical Relevance: This study identified mechanical and microstructural differences among common grafts and between these grafts and the cruciate ligaments they replace. Further research is needed to properly interpret the clinical relevance of these differences.
Background: The variable anatomy and controversy of the anterolateral ligament (ALL) reflect the complex relationship among the anterolateral knee structures. Purpose/Hypothesis: The purpose was to quantify the microstructural and mechanical properties of the ALL as compared with the anterolateral capsule (ALC) and lateral collateral ligament (LCL). The primary hypotheses were that (1) there is no difference in these properties between the ALL and ALC and (2) the LCL has significantly different properties from the ALL and ALC. Study Design: Descriptive laboratory study. Methods: The LCL, ALL, and ALC were harvested from 25 cadaveric knees. Mechanical testing and microstructural analyses were performed using quantitative polarized light imaging. The average degree of linear polarization (AVG DoLP; mean strength of collagen alignment) and standard deviation of the angle of polarization (STD AoP; degree of variation in collagen angle orientation) were calculated. Results: Linear region moduli were not different between the ALC and ALL (3.75 vs 3.66 MPa, respectively; P > .99). AVG DoLP values were not different between the ALC and ALL in the linear region (0.10 vs 0.10; P > .99). Similarly, STD AoP values were not different between the ALC and ALL (24.2 vs 21.7; P > .99). The LCL had larger modulus, larger AVG DoLP, and smaller STD AoP values than the ALL and ALC. Of 25 knee specimens, 3 were observed to have a distinct ALL, which exhibited larger modulus, larger AVG DoLP, and smaller STD AoP values as compared with nondistinct ALL samples. Conclusion: There were no differences in the mechanical and microstructural properties between the ALL and ALC. The ALC and ALL exhibited comparably weak and disperse collagen alignment. However, when a distinct ALL was present, the properties were suggestive of a ligamentous structure. Clinical Relevance: The properties of the ALL are similar to those of a ligament only when a distinct ALL is present, but otherwise, for the majority of specimens, ALL properties are closer to those of the capsule. Variability in the ligamentous structure of the ALL suggests that it may be more important in some patients than others and reconstruction may be considered in selective patients. Further study is needed to better understand its selective role and optimal indications for reconstruction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.